Can young students understand the mathematical concept of equality? A whole-year arithmetic teaching experiment in second grade

  • Jean-Paul Fischer
  • Emmanuel Sander
  • Gérard Sensevy
  • Bruno Vilette
  • Jean-François Richard
Article
  • 11 Downloads

Abstract

Ensuring students correctly understand the notion of equality is a fundamental problem in teaching mathematics. Is it possible to teach arithmetic in such a way that students do not misinterpret the equal sign "=" as indicating the result of an arithmetic operation and, consequently, viewing the arithmetic operation symbols (+, -, or x) as systematically meaning perform a computation? The present paper describes the implementation of an experimental arithmetic teaching program (called ACE) drawn up in conjunction with teachers and focusing on these issues. We assessed the program's impact via an experiment involving 1140 experimental group students and 1155 control group students, and using a pretest/posttest design. The experimental group students achieved higher composite arithmetic scores, combining all four subdomains (arithmetic writing, mental computation, word-problem solving, and estimation), than control group students. The effect size, computed using individuals' posttest scores adjusted for pretest scores was d = 0.559. The ACE program was effective in all four subdomains tested; however, it was particularly successful in the arithmetic writing subdomain, especially in writing equalities. The program's effect not only held one year later, it was cumulative, as the benefits produced by following the program in both first and second grade were almost double those of following the program in just one grade.

Keywords

Arithmetic teaching Arithmetic writing Arithmetic comprehension Second grade Equal sign 

Notes

Acknowledgments

We thank all the children and teachers who have taken part in the experimentation. We are also grateful to the experimenters, coders, and administrative officials who have facilitated its performing.

Supplementary material

10212_2018_384_MOESM1_ESM.docx (1.6 mb)
ESM 1 (DOCX 1607 kb)

References

  1. Alibali, M. W., Phillips, K. M. O., & Fischer, A. D. (2009). Learning new problem-solving strategies leads to changes in problem representation. Cognitive Development, 24(4), 89–101.  https://doi.org/10.1080/15248372.2010.516417.CrossRefGoogle Scholar
  2. Bailey, D. H., Nguyen, T., Jenkin, J. M., Domina, T., Clements, D. H., & Sarama, J. S. (2016). Fadeout in an early mathematics intervention: constraining content or preexisting differences? Developmental Psychology, 52(9), 1457–1469.  https://doi.org/10.1037/dev0000188.CrossRefGoogle Scholar
  3. Barmby, P., Harries, T., Higgins, S., & Suggate, J. (2009). The array representation and primary children’s understanding and reasoning in multiplication. Educational Studies in Mathematics, 70(3), 217–241.  https://doi.org/10.1007/s10649-008-9145-1.CrossRefGoogle Scholar
  4. Baroody, A. J. (1999). Children’s relational knowledge of addition and subtraction. Cognition and Instruction, 17(2), 137–175.  https://doi.org/10.1207/S1532690XCI170201.CrossRefGoogle Scholar
  5. Baroody, A. J., & Ginsburg, H. P. (1983). The effects of instruction on children’s understanding of the “equals” sign. The Elementary School Journal, 84(2), 199–212.CrossRefGoogle Scholar
  6. Bates, D., Maechler, M., Bolker, B., & Walker, S. (2015). Fitting linear mixed-effects models using lme4. Journal of Statistical Software, 67, 1–48.  https://doi.org/10.18637/jss.v067.i01.CrossRefGoogle Scholar
  7. Brissiaud, R. (1994). Teaching and development: solving “missing addend” problems using subtraction. European Journal of Psychology of Education, 9(4), 343–365.  https://doi.org/10.1007/BF03172907.CrossRefGoogle Scholar
  8. Byrd, C. E., McNeil, N. M., Chesney, D. L., & Matthews, P. G. (2015). A specific misconception of the equal sign acts as a barrier to children’s learning of early algebra. Learning and Individual Differences, 38, 61–67.  https://doi.org/10.1016/j.lindif.2015.01.001.CrossRefGoogle Scholar
  9. Byrd-Hornburg, C., Rieber, M. L., & McNeil, N. M. (2017). An integrative data analysis of gender differences in children’s understanding of mathematical equivalence. Journal of Experimental Child Psychology, 163, 140–150.  https://doi.org/10.1016/j.jecp.2017.06.002.CrossRefGoogle Scholar
  10. Chesney, D. L., McNeil, N. M., Matthews, P. G., Byrd, C. E., Petersen, L. A., Wheeler, M. C., Fyfe, E. R., & Dunwiddie, A. E. (2014). Organization matters: mental organization of addition knowledge relates to understanding math equivalence in symbolic form. Cognitive Development, 30, 30–46.  https://doi.org/10.1016/j.cogdev.2014.01.001.CrossRefGoogle Scholar
  11. Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). New York: Taylor & Francis.Google Scholar
  12. Crooks, N. M., & Alibali, M. W. (2014). Defining and measuring conceptual knowledge in mathematics. Developmental Review, 34(4), 344–377.  https://doi.org/10.1016/j.dr.2014.10.001.CrossRefGoogle Scholar
  13. DeCaro, M. S. (2016). Inducing mental set constrains procedural flexibility and conceptual understanding in mathematics. Memory & Cognition, 44(7), 1138–1148.  https://doi.org/10.3758/s13421-016-0614-y.CrossRefGoogle Scholar
  14. Dehaene, S. (2011). The number sense (2nd ed.). New York: Oxford University Press.Google Scholar
  15. Dussuc, M. P., Charnay, R., & Madier, D. (2009). Cap maths cycle 2, CE1: Nouveaux programmes. Paris: Hatier.Google Scholar
  16. Fischbein, E. (1989). Tacit models and mathematical reasoning. For the Learning of Mathematics, 9(2), 9–14.Google Scholar
  17. Fischer, J. P., & Tazouti, Y. (2012). Unraveling the mystery of mirror writing in typically developing children. Journal of Educational Psychology, 104(1), 193–205.  https://doi.org/10.1037/a0025735.
  18. Fritz, C. O., Morris, P. E., & Richler, J. J. (2012). Effect size estimates: current use, calculations, and interpretation. Journal of Experimental Psychology: General, 141(1), 2–18.  https://doi.org/10.1037/a0024338.CrossRefGoogle Scholar
  19. Fuchs, L. S., Fuchs, D., Hamlet, C. L., Powell, S. R., Capizzi, A. M., & Seethaler, P. M. (2006). The effects of computer-assisted instruction on number combination skill in at-risk first graders. Journal of Learning Disabilities, 39(5), 467–475.  https://doi.org/10.1177/00222194060390050701.CrossRefGoogle Scholar
  20. Fuchs, L. S., Powell, S. R., Cirino, P. T., Schumacher, R. F., Marrin, S., Hamlett, C. L., Fuchs, D., Compton, D. L., & Changas, P. C. (2014). Does calculation or word-problem instruction provide a stronger route to prealgebraic knowledge? Journal of Educational Psychology, 106(4), 990–1006.  https://doi.org/10.1037/a0036793.CrossRefGoogle Scholar
  21. Ginsburg, H. (1977). Children’s arithmetic. New York: Van Nostrand.Google Scholar
  22. Glass, G. V., McGaw, B., & Smith, M. L. (1981). Meta-analysis in social research. Beverly Hills: Sage.Google Scholar
  23. Hattikudur, S., & Alibali, M. W. (2010). Learning about the equal sign: does comparing with inequality symbols help? Journal of Experimental Child Psychology, 107(1), 15–30.  https://doi.org/10.1016/j.jecp.2010.03.004.CrossRefGoogle Scholar
  24. Jara-Ettinger, J., Piantadosi, S., Spelke, E. S., Levy, R., & Gibson, E. (2017). Mastery of the logic of natural numbers is not the result of mastery of counting: evidence from late counters. Developmental Science, 20, e12459.  https://doi.org/10.1111/desc.12459.CrossRefGoogle Scholar
  25. Joffredo-Le Brun, S., Morellato, M., Sensevy, G., & Quilio, S. (2018). Cooperative engineering as a joint action. European Educational Research Journal, 17(1), 187–208.  https://doi.org/10.1177/1474904117690006.
  26. Kieran, C. (1981). Concepts associated with the equality symbol. Educational Studies in Mathematics, 12(3), 317–326.CrossRefGoogle Scholar
  27. Knuth, E. J., Stephens, A. C., McNeil, N. M., & Alibali, M. W. (2006). Does understanding the equal sign matter? Evidence from solving equations. Journal for Research in Mathematics Education, 37, 297–312.Google Scholar
  28. Kreft, I., & De Leeuw, J. (1998). Introducing multilevel modeling. London: Sage Publications.CrossRefGoogle Scholar
  29. McNeil, N. M. (2007). U-shaped development in math: 7-year-olds outperform 9-year-olds on equivalence problems. Developmental Psychology, 43(3), 687–695.  https://doi.org/10.1037/0012-1649.43.3.687.CrossRefGoogle Scholar
  30. McNeil, N. M., Rittle-Johnson, B., Hattikudur, S., & Petersen, L. A. (2010). Continuity in representation between children and adults: arithmetic knowledge hinders undergraduates’ algebraic problem solving. Journal of Cognition and Development, 11(4), 437–457.  https://doi.org/10.1080/15248372.2010.516421.CrossRefGoogle Scholar
  31. McNeil, N. M., Fyfe, E. R., Petersen, L. A., Dunwiddie, A. E., & Brletic-Shipley, H. (2011). Benefits of practicing 4 = 2 + 2: nontraditional problem formats facilitate children’s understanding of mathematical equivalence. Child Development, 82(5), 1620–1633.  https://doi.org/10.1111/j.1467-8624.2011.01622.x.CrossRefGoogle Scholar
  32. McNeil, N. M., Fyfe, E. R., & Dunwiddie, A. E. (2015). Arithmetic practice can be modified to promote understanding of mathematical equivalence. Journal of Educational Psychology, 107(2), 423–436.  https://doi.org/10.1037/a0037687.CrossRefGoogle Scholar
  33. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team (2017). nlme: Linear and Nonlinear Mixed Effects Models (R package version 3.1–131). Retrieved from https://cran.r-project.org/web/packages/nlme/nlme.pdf.
  34. Powell, S. R. (2012). Equations and the equal sign in elementary mathematics textbooks. The Elementary School Journal, 112(4), 627–648.CrossRefGoogle Scholar
  35. R Core Team. (2015). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  36. Verschaffel, L., Bryant, P., & Torbeyns, J. (2012). Introduction. Educational Studies in Mathematics, 79(3), 327–334.  https://doi.org/10.1007/s10649-012-9381-2.CrossRefGoogle Scholar
  37. Zieffler, A. S., Harring, J. R., & Long, J. D. (2011). Comparing groups: randomization and bootstrap methods using R. Hoboken: Wiley.CrossRefGoogle Scholar

Copyright information

© Instituto Superior de Psicologia Aplicada, Lisboa, Portugal and Springer Science+Business Media B.V., part of Springer Nature 2018

Authors and Affiliations

  1. 1.Lorraine Laboratory of Psychology and Neuroscience (2LPN)University of LorraineNancyFrance
  2. 2.Developmental Psychology and Educational Sciences, IDEA LabUniversity of GenevaGenevaSwitzerland
  3. 3.Educational Sciences, CREAD LaboratoryUniversity Bretagne OccidentaleBrestFrance
  4. 4.Developmental Psychology, PSITEC LaboratoryUniversity LilleVilleneuve-d’AscqFrance
  5. 5.Paragraphe LaboratoryUniversity Paris 8Saint-DenisFrance

Personalised recommendations