An ontology-based framework for improving color vision deficiency accessibility

Abstract

Web technologies provide resources for the intensive use of colors in web pages. They are a core element in the design of interactive interfaces and are essential in the perception and understanding of information. However, color intensive design on the web affects the accessibility for users with color vision deficiency (CVD), who face difficulties in recognizing or distinguishing colors. CVD users may experience limitations and barriers in exploring web pages, even for simple tasks. Interface adaptation techniques may deal with several CVD visualization issues. Nevertheless, different situations and individual preferences turn choosing the most suitable recoloring technique into a complex task. Existing proposals in the literature fail in not considering various pathology types and individual preferences. This article defines a framework and techniques for the development of adaptive interfaces that facilitate the interaction of CVD people with web systems. The proposed research develops the FAIBOUD framework, which uses ontologies as artifacts for representing knowledge about CVD types, recoloring algorithms, and users’ access contexts and preferences. The FAIBOUD includes algorithms to support an adaptation decision process, which selects the most suited adaptation technique according to CVD type and access context. Our solution allows for the determination and automatic application of the best recoloring techniques to adapt interfaces for CVD users. Our experimental evaluation was conducted with fifteen CVD users. The results obtained from several illustrative scenarios demonstrate the benefits and enhancement of web interface accessibility based on our adaptive approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Notes

  1. 1.

    https://www.w3.org/TR/WCAG20/.

  2. 2.

    https://www.w3.org/OWL/.

  3. 3.

    https://www.w3.org/Submission/SWRL/.

  4. 4.

    https://www.w3.org/TR/WCAG20-TECHS/.

  5. 5.

    This situation was specified based on our previous user studies [9], which showed that [24] was the most suitable technique for this situation among the studied automatic recoloring techniques.

  6. 6.

    https://github.com/ricardoaraujobe/faiboud.git.

  7. 7.

    http://pellet.owldl.com/.

  8. 8.

    https://www.w3.org/TR/UNDER STAND ING-WCAG20/visual-audio -contr ast-contrast.html.

  9. 9.

    Participants have signed a consent form and were duly informed about this research, the involved procedures, as well as the possible risks and benefits arising from their participation. This online procedure was approved by the Unifaccamp post-graduation board (07032017).

  10. 10.

    Translation made by the authors from the original response in Brazilian Portuguese.

  11. 11.

    https://www.who.int/classifications/icf/en/.

References

  1. 1.

    Abascal, J., Aizpurua, A., Cearreta, I., Gamecho, B., Garay-Vitoria, N., Miñón, R.: Automatically generating tailored accessible user interfaces for ubiquitous services. In: The Proceedings of the 13th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS’11, pp. 187–194. ACM, New York (2011). https://doi.org/10.1145/2049536.2049570

  2. 2.

    Abascal, J., Aizpurua, A., Cearreta, I., Gamecho, B., Garay-Vitoria, N., Miñón, R.: A modular approach to user interface adaptation for people with disabilities in ubiquitous environments. Internal Technical Report EHU-KAT-IK-01-11 (2011)

  3. 3.

    Bailey, J.D.: Color Vision Deficiency: A Concise Tutorial for Optometry and Ophthalmology, vol. 61. Richmond Products Inc, Albuquerque (2010)

    Google Scholar 

  4. 4.

    Birch, J.: Worldwide prevalence of red-green color deficiency. J. Opt. Soc. Am. A 29(3), 313–320 (2012). https://doi.org/10.1364/JOSAA.29.000313

    MathSciNet  Article  Google Scholar 

  5. 5.

    Chen, S.Y., Wang, J.H.: Individual differences and personalized learning: a review and appraisal. Univ. Access Inf. Soc. (2020). https://doi.org/10.1007/s10209-020-00753-4

    Article  Google Scholar 

  6. 6.

    Cole, B.L.: The handicap of abnormal colour vision. Clin. Exp. Optom. 87, 258–275 (2004). https://doi.org/10.1111/j.1444-0938.2004.tb05056.x

    Article  Google Scholar 

  7. 7.

    de Araújo, R.J., Dos Reis, J.C., Bonacin, R.: Ontology-based adaptive interfaces for colorblind users. In: Antona, M., Stephanidis, C. (eds.) Universal Access in Human-Computer Interaction. Methods, Techniques, and Best Practices. HCII 2016, pp. 27–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40250-53

    Google Scholar 

  8. 8.

    de Araújo, R.J., dos Reis, J.C., Bonacin, R.: Colors similarity computation for user interface adaptation. In: Antona, M., Stephanidis, C. (eds.) Universal Access in Human-Computer Interaction. Design and Development Approaches and Methods, pp. 333–345. Springer, Cham (2017)

    Google Scholar 

  9. 9.

    de Araújo, R.J., Dos Reis, J.C., Bonacin, R.: Understanding interface recoloring aspects by colorblind people: a user study. Univ. Access Inf. Soc. 19(1), 81–98 (2020). https://doi.org/10.1007/s10209-018-0631-7

    Article  Google Scholar 

  10. 10.

    Dell, N., Vaidyanathan, V., Medhi, I., Cutrell, E., Thies, W.: “yours is better!”: Participant response bias in HCI. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’12, pp. 1321–1330. ACM, New York (2012). https://doi.org/10.1145/2207676.2208589

  11. 11.

    Erra, U., Iaccarino, G., Malandrino, D., Scarano, V.: Personalizable edge services for web accessibility. Univ. Access Inf. Soc. 6, 285–306 (2007). https://doi.org/10.1007/s10209-007-0091-y

    Article  Google Scholar 

  12. 12.

    Fayzrahmanov, R.R., Göbel, M.C., Holzinger, W., Krüpl, B., Baumgartner, R.: A unified ontology-based web page model for improving accessibility. In: Proceedings of the 19th International Conference on World Wide Web, WWW’10, pp. 1087–1088. ACM, New York, (2010). https://doi.org/10.1145/1772690.1772817

  13. 13.

    Flatla, D.R., Gutwin, C.: Individual models of color differentiation to improve interpretability of information visualization, pp. 2563–2572 (2010). https://doi.org/10.1145/1753326.1753715

  14. 14.

    Flatla, D.R., Gutwin, C.: Improving calibration time and accuracy for situation-specific models of color differentiation. In: The Proceedings of the 13th International ACM SIGACCESS Conference on Computers and accessibility—ASSETS’11, p. 195 (2011). https://doi.org/10.1145/2049536.2049572

  15. 15.

    Flatla, D., Gutwin, C.: SSMRecolor: improving recoloring tools with situation-specific models of color differentiation. In: Proceedings of the SIGCHI Conference on Human, pp. 2297–2306 (2012). http://dl.acm.org/citation.cfm?id=2208388

  16. 16.

    Flatla, D.R., Gutwin, C.: Situation-specific models of color differentiation. ACM Trans. Access. Comput. 4(3), 1–44 (2012). https://doi.org/10.1145/2399193.2399197

    Article  Google Scholar 

  17. 17.

    Flatla, D.R., Gutwin, C.: So that’s what you see: building understanding with personalized simulations of colour vision deficiency. In: Proceedings of the 14th International ACM Conference on Computers and Accessibility, ASSETS’12, pp. 167–174. ACM, New York (2012). https://doi.org/10.1145/2384916.2384946

  18. 18.

    Flatla, D.R., Reinecke, K., Gutwin, C., Gajos, K.Z.: Sprweb: preserving subjective responses to website colour schemes through automatic recolouring. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, CHI’13, pp. 2069–2078. ACM, New York (2013). https://doi.org/10.1145/2470654.2481283

  19. 19.

    Fortuna, F.J., Bonacin, R., Baranauskas, M.C.C.: A framework based on ajax and semiotics to build flexible user interfaces. In: Filipe, J., Cordeiro, J. (eds.) Enterprise Information Systems, pp. 526–540. Springer, Berlin (2011)

    Google Scholar 

  20. 20.

    Gale, N.K., Heath, G., Cameron, E., Rashid, S., Redwood, S.: Using the framework method for the analysis of qualitative data in multi-disciplinary health research. BMC Med. Res. Methodol. 13(1), 117 (2013). https://doi.org/10.1186/1471-2288-13-117

    Article  Google Scholar 

  21. 21.

    Glimm, B., Horrocks, I., Motik, B., Stoilos, G., Wang, Z.: Hermit: an owl 2 reasoner. J. Autom. Reason. 53(3), 245–269 (2014). https://doi.org/10.1007/s10817-014-9305-1

    Article  MATH  Google Scholar 

  22. 22.

    Gruber, T.R.: Toward principles for the design of ontologies used for knowledge sharing. Int. J. Hum. Comput. Stud. 43(5–6), 907–928 (1995). https://doi.org/10.1006/ijhc.1995.1081

    Article  Google Scholar 

  23. 23.

    Hervás, R., Bravo, J.: Towards the ubiquitous visualization: adaptive user-interfaces based on the semantic web. Interact. Comput. 23, 40–56 (2011). https://doi.org/10.1016/j.intcom.2010.08.002

    Article  Google Scholar 

  24. 24.

    Huang, J., Wu, S., Chen, C.: Enhancing color representation for the color vision impaired. In: Workshop on Computer Vision Applications for the Visually Impaired (2008)

  25. 25.

    Iaccarino, G., Malandrino, D., Del Percio, M., Scarano, V.: Efficient edge-services for colorblind users. In: Proceedings of the 15th International Conference on World Wide Web, WWW’06, pp. 919–920. ACM, New York (2006). https://doi.org/10.1145/1135777.1135944

  26. 26.

    Ishihara, S.: Ishihara’s Tests for Colour Blindness: 24, Plate edn. Taylor & Francis, London (1998)

    Google Scholar 

  27. 27.

    Jefferson, L., Harvey, R.: Accommodating color blind computer users. In: Proceedings of the 8th International ACM SIGACCESS Conference on Computers and Accessibility, Assets’06, pp. 40–47. ACM, New York (2006). https://doi.org/10.1145/1168987.1168996

  28. 28.

    Jefferson, L., Harvey, R.: An interface to support color blind computer users, pp. 1535–1538 (2007). https://doi.org/10.1145/1240624.1240855

  29. 29.

    Kendall, E.F., McGuinness, D.L., Ding, Y.: Ontology Engineering (Synthesis Lectures on the Semantic Web: Theory and Technolog). Morgan & Claypool Publishers, Los Altos (2019)

    Google Scholar 

  30. 30.

    Kuhn, G.R.: Image recoloring for color-vision deficients. Ph.D. thesis, Porto Alegre, Rio Grande do Sul (2008)

  31. 31.

    Kuhn, G.R., Oliveira, M.M., Fernandes, L.A.F.: An efficient naturalness-preserving image-recoloring method for dichromats. IEEE Trans. Vis. Comput. Graph. 14, 1747–1754 (2008). https://doi.org/10.1109/TVCG.2008.112

    Article  Google Scholar 

  32. 32.

    Luo, M.R., Cui, G., Rigg, B.: The development of the CIE 2000 colour-difference formula: CIEDE2000. Color Res. Appl. 26(5), 340–350 (2001). https://doi.org/10.1002/col.1049

    Article  Google Scholar 

  33. 33.

    Machado, G.M., Oliveira, M.M.: Real-time temporal-coherent color contrast enhancement for dichromats. In: Proceedings of the 12th Eurographics/IEEE—VGTC Conference on Visualization, EuroVis’10, pp. 933–942. The Eurographs Association; John Wiley; Sons, Ltd., Chichester (2010). https://doi.org/10.1111/j.1467-8659.2009.01701.x

  34. 34.

    Malandrino, D., Mazzoni, F., Riboni, D., Bettini, C., Colajanni, M., Scarano, V.: Mimosa: context-aware adaptation for ubiquitous web access. Pers. Ubiquit. Comput. 14(4), 301–320 (2010). https://doi.org/10.1007/s00779-009-0232-9

    Article  Google Scholar 

  35. 35.

    Martini, R.G., Librelotto, G.R.: Uma abordagem para a personalização automática de interfaces de usuário para dispositivos móveis em Ambientes Pervasivos (2012)

  36. 36.

    Mereuta, A., Aupetit, S., Monmarché, N., Slimane, M.: Web page textual color contrast compensation for CVD users using optimization methods. J. Math. Model. Algorithms Oper. Res. 13(4), 447–470 (2014). https://doi.org/10.1007/s10852-013-9239-3

    Article  Google Scholar 

  37. 37.

    Neris, VPdA, Baranauskas, M.C.C.: Designing tailorable software systems with the users’ participation. J. Braz. Comput. Soc. 18(3), 213–227 (2012). https://doi.org/10.1007/s13173-012-0070-x

    Article  Google Scholar 

  38. 38.

    Noy, N.F., McGuinness, D.L.: Ontology development 101: a guide to creating your first ontology. Tech. rep. (2001). http://www-ksl.stanford.edu/people/dlm/papers/ontology-tutorial-noy-mcguinness-abstract.html

  39. 39.

    Oguego, C.L., Augusto, J.C., Muñoz, A., Springett, M.: A survey on managing users’ preferences in ambient intelligence. Univ. Access Inf. Soc. 17(1), 97–114 (2018). https://doi.org/10.1007/s10209-017-0527-y

    Article  Google Scholar 

  40. 40.

    Patra, M.R., Dash, A.R., Mishra, P.K.: A quantitative analysis of WCAG 2.0 compliance for some indian web portals. CoRR (2017). arXiv:1710.08788

  41. 41.

    Pinho, M. S.: Computação gráfica - manipulação de imagens. http://www.inf.pucrs.br/~pinho/CG/Aulas/Img/IMG.htm (2016). Accessed 1 Feb 2017

  42. 42.

    Quinde, M., Khan, N., Augusto, J.C., van Wyk, A., Stewart, J.: Context-aware solutions for asthma condition management: a survey. Univ. Access Inf. Soc. 19(3), 571–593 (2020). https://doi.org/10.1007/s10209-018-0641-5

    Article  Google Scholar 

  43. 43.

    Rasche, K., Geist, R., Westall, J.: Re-coloring images for Gamuts of lower dimension. Comput. Graph. Forum 24(3), 423–432 (2005). https://doi.org/10.1111/j.1467-8659.2005.00867.x

    Article  Google Scholar 

  44. 44.

    Ribeiro, M., Gomes, A.J.P.: Recoloring algorithms for colorblind people: a survey. ACM Comput. Surv. 52(4) (2019). https://doi.org/10.1145/3329118

  45. 45.

    Sherchan, W., Nepal, S., Bouguettaya, A., Chen, S.: Context-sensitive user interfaces for semantic services. ACM Trans. Internet Technol. 11(3), 14:1–14:27 (2012). https://doi.org/10.1145/2078316.2078322

    Article  Google Scholar 

  46. 46.

    Simon-Liedtke, J., Flatla, D.R., Bakken, E.N.: Checklist for Daltonization methods: requirements and characteristics of a good recolouring method. Electron. Imaging 2017(18), 21–27 (2017). https://doi.org/10.2352/ISSN.2470-1173.2017.18.COLOR-029

    Article  Google Scholar 

  47. 47.

    Sirin, E., Parsia, B., Grau, B.C., Kalyanpur, A., Katz, Y.: Pellet: a practical owl-dl reasoner. J. Web Semant. 5(2), 51–53 (2007). https://doi.org/10.1016/j.websem.2007.03.004. Software Engineering and the Semantic Web

    Article  Google Scholar 

  48. 48.

    Tanuwidjaja, E., Huynh, D., Koa, K., Nguyen, C., Shao, C., Torbett, P., Emmenegger, C., Weibel, N.: Chroma: a wearable augmented-reality solution for color blindness. In: UbiComp 2014—Proceedings of the 2014 ACM International Joint Conference on Pervasive and Ubiquitous Computing, pp. 799–810 (2014). https://doi.org/10.1145/2632048.2632091

  49. 49.

    Tigwell, G.W., Flatla, D.R., Archibald, N.D.: Ace: a colour palette design tool for balancing aesthetics and accessibility. ACM Trans. Access. Comput. 9(2), 5:1–5:32 (2017). https://doi.org/10.1145/3014588

    Article  Google Scholar 

  50. 50.

    Troiano, L., Birtolo, C., Miranda, M.: Adapting palettes to color vision deficiencies by genetic algorithm. In: Proceedings of the 10th Annual Conference on Genetic and Evolutionary Computation—GECCO’08, p. 1065 (2008)

  51. 51.

    Wakita, K., Shimamura, K.: Smartcolor: disambiguation framework for the colorblind. In: Proceedings of the 7th International ACM SIGACCESS Conference on Computers and Accessibility, Assets’05, pp. 158–165. ACM, New York (2005). https://doi.org/10.1145/1090785.1090815

  52. 52.

    Wilcoxon, F.: Individual Comparisons by Ranking Methods, pp. 196–202. Springer New York, New York (1992). https://doi.org/10.1007/978-1-4612-4380-916

    Google Scholar 

  53. 53.

    Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondylakis, H., Motta, E.: Ontology evolution: a process-centric survey. Knowl. Eng. Rev. 30(1), 45–75 (2015)

    Article  Google Scholar 

  54. 54.

    Zakraoui, J., Zagler, W.: An ontology for representing context in user interaction for enhancing web accessibility for all (2010)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rodrigo Bonacin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 2065 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bonacin, R., Reis, J.C.d. & de Araujo, R.J. An ontology-based framework for improving color vision deficiency accessibility. Univ Access Inf Soc (2021). https://doi.org/10.1007/s10209-021-00791-6

Download citation

Keywords

  • Interface adaptation
  • Color vision deficiency
  • Ontologies
  • Color blindness
  • Recoloring algorithms