Universal Access in the Information Society

, Volume 17, Issue 1, pp 97–114 | Cite as

A survey on managing users’ preferences in ambient intelligence

  • C. L. Oguego
  • J. C. Augusto
  • A. Muñoz
  • M. Springett
Review Paper

Abstract

Understanding the importance of preference management in ambient intelligent environments is key to providing systems that are better prepared to meet users’ expectations. This survey provides an account of the various ways that preferences have been handled in Artificial Intelligence. Our analysis indicates that most of those techniques lack the ability to handle ambiguity and the evolution of preferences over time. Further exploration shows that argumentation can provide a feasible solution to complement existing work. We illustrate our claim by using an intelligent environment case study.

Keywords

User preferences Preferences handling Ambient intelligent Argumentation 

Notes

Acknowledgements

This work is supported by the Spanish MINECO under grant TIN2016-78799-P.

References

  1. 1.
    Allen, J.F.: Towards a general theory of action and time. Artif. Intell. 23(2), 123–154 (1984)CrossRefMATHGoogle Scholar
  2. 2.
    Allen, T.E.: Making cp-nets (more) useful. In: AAAI, pp. 3057–3058 (2014)Google Scholar
  3. 3.
    Amgoud, L., Maudet, N., Parsons, S.: Modelling dialogues using argumentation. In: MultiAgent Systems, 2000. Proceedings Fourth International Conference on, pp. 31–38. IEEE (2000)Google Scholar
  4. 4.
    Augusto, J.C.: The logical approach to temporal reasoning. Artif. Intell. Rev. 16(4), 301–333 (2001)CrossRefMATHGoogle Scholar
  5. 5.
    Augusto, J.C.: Intelligent computing everywhere. In: Ambient Intelligence: The Confluence of Ubiquitous/Pervasive Computing and Artificial Intelligence (2007)Google Scholar
  6. 6.
    Augusto, J.C.: Reflections on ambient intelligence systems handling of user preferences and needs. In: Intelligent Environments (IE), 2014 International Conference on, pp. 369–371. IEEE (2014)Google Scholar
  7. 7.
    Augusto, J.C., Callaghan, V., Cook, D., Kameas, A., Satoh, I.: Intelligent environments: a manifesto. Human-Centric Comput. Inf. Sci. 3(1), 1–18 (2013)CrossRefGoogle Scholar
  8. 8.
    Augusto, J.C., Huch, M., Kameas, A., Maitland, J., McCullagh, P.J., Roberts, J., Sixsmith, A., Wichert, R. (eds.): Handbook of Ambient Assisted Living - Technology for Healthcare, Rehabilitation and Well-being, Ambient Intelligence and Smart Environments, vol. 11. IOS Press, Amsterdam (2012)Google Scholar
  9. 9.
    Augusto, J.C., Mulvenna, M.D., Zheng, H., Wang, H., Martin, S., McCullagh, P.J., Wallace, J.G.: Night optimised care technology for users needing assisted lifestyles. Behav. IT 33(12), 1261–1277 (2014)Google Scholar
  10. 10.
    Augusto, J.C., Simari, G.R.: Temporal defeasible reasoning. Knowl. Inf. Syst. 3(3), 287–318 (2001)CrossRefMATHGoogle Scholar
  11. 11.
    Aztiria, A., Izaguirre, A., Basagoiti, R., Augusto, J.C.: Learning about preferences and common behaviours of the user in an intelligent environment. In: BMI Book, pp. 289–315 (2009)Google Scholar
  12. 12.
    Aztiria, A., Izaguirre, A., Basagoiti, R., Augusto, J.C.: Learning about preferences and common behaviours of the user in an intelligent environment. In: Behaviour Monitoring and Interpretation - BMI - Smart Environments [an outgrow of BMI workshops], pp. 289–315 (2009)Google Scholar
  13. 13.
    Bandara, A.K., Kakas, A., Lupu, E.C., Russo, A.: Using argumentation logic for firewall policy specification and analysis. In: Large Scale Management of Distributed Systems, pp. 185–196. Springer (2006)Google Scholar
  14. 14.
    Bentahar, J., Alam, R., Maamar, Z., Narendra, N.C.: Using argumentation to model and deploy agent-based b2b applications. Knowl. Based Syst. 23(7), 677–692 (2010)CrossRefGoogle Scholar
  15. 15.
    Besnard, P., Hunter, A.: Elements of Argumentation. MIT Press (2008). http://mitpress.mit.edu/books/elements-argumentation
  16. 16.
    Bikakis, A., Antoniou, G.: Defeasible contextual reasoning with arguments in ambient intelligence. Knowl. Data Eng. IEEE Trans. 22(11), 1492–1506 (2010)CrossRefGoogle Scholar
  17. 17.
    Boutilier, C., Bacchus, F., Brafman, R.I.: Ucp-networks: A directed graphical representation of conditional utilities. In: Proceedings of the Seventeenth conference on Uncertainty in artificial intelligence, pp. 56–64. Morgan Kaufmann Publishers Inc. (2001)Google Scholar
  18. 18.
    Boutilier, C., Brafman, R.I., Hoos, H.H., Poole, D.: Reasoning with conditional ceteris paribus preference statements. In: Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, pp. 71–80. Morgan Kaufmann Publishers Inc. (1999)Google Scholar
  19. 19.
    Brafman, R., Domshlak, C.: Preference handling-an introductory tutorial. AI Mag. 30(1), 58 (2009)CrossRefGoogle Scholar
  20. 20.
    Brafman, R.I., Domshlak, C.: Tcp-nets for preference-based product configuration. In: Proceedings of the Forth Workshop on Configuration (in ECAI-02), pp. 101–106 (2002)Google Scholar
  21. 21.
    Caminada, M., Amgoud, L.: On the evaluation of argumentation formalisms. Artif. Intell. 171(5), 286–310 (2007)MathSciNetCrossRefMATHGoogle Scholar
  22. 22.
    Châtel, P., Malenfant, J., Truck, I.: Qos-based late-binding of service invocations in adaptive business processes. In: Web Services (ICWS), 2010 IEEE International Conference on, pp. 227–234. IEEE (2010)Google Scholar
  23. 23.
    Châtel, P., Truck, I., Malenfant, J.: A linguistic approach for non-functional constraints in a semantic soa environment. In: 8th International FLINS Conference on Computational Intelligence in Decision and Control (FLINS08), pp. 889–894 (2008)Google Scholar
  24. 24.
    Chesñevar, C.I., Maguitman, A.G., Loui, R.P.: Logical models of argument. ACM Comput. Surv. (CSUR) 32(4), 337–383 (2000)CrossRefGoogle Scholar
  25. 25.
    Dix, J., Parsons, S., Prakken, H., Simari, G.: Research challenges for argumentation. Comput. Sci. Res. Dev. 23(1), 27–34 (2009)CrossRefGoogle Scholar
  26. 26.
    Ferrando, S.P., Onaindia, E.: Defeasible argumentation for multi-agent planning in ambient intelligence applications. In: Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems, vol. 1, pp. 509–516. International Foundation for Autonomous Agents and Multiagent Systems (2012)Google Scholar
  27. 27.
    Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem Proving. Wiley, Hoboken (1987)MATHGoogle Scholar
  28. 28.
    Goldsmith, J., Junker, U.: Preference handling for artificial intelligence. AI Mag. 29(4), 9 (2009)CrossRefGoogle Scholar
  29. 29.
    Gonzales, C., Perny, P.: Gai networks for decision making under certainty. In: IJCAI05–Workshop on Advances in Preference Handling. Citeseer (2005)Google Scholar
  30. 30.
    Hamblin, C.L.: Instants and intervals. In: The Study of Time, pp. 324–331. Springer (1972)Google Scholar
  31. 31.
    Homola, M., Patkos, T., Flouris, G., Šefránek, J., Šimko, A., Frtús, J., Zografistou, D., Baláž, M.: Resolving conflicts in knowledge for ambient intelligence. Knowl. Eng. Rev. 30(05), 455–513 (2015)CrossRefGoogle Scholar
  32. 32.
    Huyck, C., Augusto, J., Gao, X., Botía, J.A.: Advancing ambient assisted living with caution. In: International Conference on Information and Communication Technologies for Ageing Well and e-Health, pp. 19–32. Springer (2015)Google Scholar
  33. 33.
    Lukasiewicz, T.: Introducing ontological cp- nets (2012)Google Scholar
  34. 34.
    Madrid, N.M., Fernández, J.M., Seepold, R., Augusto, J.: Sensors for ambient assisted living (aal) and smart homesGoogle Scholar
  35. 35.
    Muñoz, A., Augusto, J.C., Villa, A., Botía, J.A.: Design and evaluation of an ambient assisted living system based on an argumentative multi-agent system. Pers. Ubiquit. Comput. 15(4), 377–387 (2011)CrossRefGoogle Scholar
  36. 36.
    Muñoz, A., Botía, J.A.: Developing an intelligent parking management application based on multi-agent systems and semantic web technologies. In: Hybrid Artificial Intelligence Systems, pp. 64–72. Springer (2010)Google Scholar
  37. 37.
    Muñoz, A., Botía, J.A., Augusto, J.C.: Using argumentation to understand ambiguous situations in intelligent environments. In: Ambient Intelligence Perspectives II - Selected Papers from the Second International Ambient Intelligence Forum 2009, Hradec Králové, Czech Republic, 16–17 September 2009, pp. 35–42 (2009)Google Scholar
  38. 38.
    Munoz, A., Botía, J.A., Augusto, J.C.: Intelligent decision-making for a smart home environment with multiple occupants. In: Computational Intelligence in Complex Decision Systems, pp. 325–371. Springer (2010)Google Scholar
  39. 39.
    Pigozzi, G., Tsoukiàs, A., Viappiani, P.: Preferences in artificial intelligence. Ann. Math. Artif. Intell. 1–41 (2014)Google Scholar
  40. 40.
    Prakken, H.: A logical framework for modelling legal argument. In: Proceedings of the 4th International Conference on Artificial Intelligence and Law, pp. 1–9. ACM (1993)Google Scholar
  41. 41.
    Prakken, H., Vreeswijk, G.: Logics for Defeasible Argumentation. In: Handbook of Philosophical Logic, pp. 219–318. Springer (2001)Google Scholar
  42. 42.
    Santhanam, G.R., Basu, S., Honavar, V.: Tcp- compose–a tcp-net based algorithm for efficient composition of web services using qualitative preferences. In: Service-Oriented Computing–ICSOC 2008, pp. 453–467. Springer (2008)Google Scholar
  43. 43.
    Simari, G.R., Loui, R.P.: A mathematical treatment of defeasible reasoning and its implementation. Artif. Intell. 53(2–3), 125–157 (1992)MathSciNetCrossRefMATHGoogle Scholar
  44. 44.
    Stary, C., Pasztor, A.: Luisa logic for task-oriented user interface specification. Int. J. Intell. Syst. 10(2), 201–231 (1995)CrossRefGoogle Scholar
  45. 45.
    Truck, I., Schmid, W.: A new proposal to represent the linguistic conditional preference networks. In: Intelligent Systems and Knowledge Engineering (ISKE), 2015 10th International Conference on, pp. 514–520. IEEE (2015)Google Scholar
  46. 46.
    Wang, H., Shao, S., Zhou, X., Wan, C., Bouguettaya, A.: Web service selection with incomplete or inconsistent user preferences. In: Service-Oriented Computing, pp. 83–98. Springer (2009)Google Scholar
  47. 47.
    Zadeh, L.A.: The concept of a linguistic variable and its application to approximate reasoningi. Inf. Sci. 8(3), 199–249 (1975)CrossRefMATHGoogle Scholar
  48. 48.
    Zhang, S., Mouhoub, M., Sadaoui, S.: Integrating tcp-nets and csps: The constrained tcp-net (ctcp-net) model. In: Current Approaches in Applied Artificial Intelligence, pp. 201–211. Springer (2015)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • C. L. Oguego
    • 1
  • J. C. Augusto
    • 1
  • A. Muñoz
    • 2
  • M. Springett
    • 3
  1. 1.Research Group on Development of Intelligent Environments, Department of Computer ScienceMiddlesex University LondonLondonUK
  2. 2.Department of Polytechnic SciencesUniversidad Católica San Antonio de MurciaMurciaSpain
  3. 3.Design for All Research Centre, Department of Computer ScienceMiddlesex University LondonLondonUK

Personalised recommendations