Advertisement

Unified Convergence Analysis of Numerical Schemes for a Miscible Displacement Problem

  • Jérôme Droniou
  • Robert Eymard
  • Alain Prignet
  • Kyle S.  Talbot
Article
  • 32 Downloads

Abstract

This article performs a unified convergence analysis of a variety of numerical methods for a model of the miscible displacement of one incompressible fluid by another through a porous medium. The unified analysis is enabled through the framework of the gradient discretisation method for diffusion operators on generic grids. We use it to establish a novel convergence result in \(L^\infty (0,T; L^2(\Omega ))\) of the approximate concentration using minimal regularity assumptions on the solution to the continuous problem. The convection term in the concentration equation is discretised using a centred scheme. We present a variety of numerical tests from the literature, as well as a novel analytical test case. The performance of two schemes is compared on these tests; both are poor in the case of variable viscosity, small diffusion and medium to small time steps. We show that upstreaming is not a good option to recover stable and accurate solutions, and we propose a correction to recover stable and accurate schemes for all time steps and all ranges of diffusion.

Keywords

Miscible fluid flow Coupled elliptic–parabolic problem Convergence analysis Uniform-in-time convergence Gradient discretisation method Finite differences Mass-lumped finite elements 

Mathematics Subject Classification

65M06 65M08 65M12 65M60 

References

  1. 1.
    I. Aavatsmark, T. Barkve, O. Boe, and T. Mannseth. Discretization on non-orthogonal, quadrilateral grids for inhomogeneous, anisotropic media. J. Comput. Phys., 127(1):2–14, 1996.CrossRefzbMATHGoogle Scholar
  2. 2.
    B. Amaziane and M. El Ossmani. Convergence analysis of an approximation to miscible fluid flows in porous media by combining mixed finite element and finite volume methods. Numer. Methods Partial Differential Equations, 24(3):799–832, 2008.MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    B. Andreianov, F. Boyer, and F. Hubert. Discrete duality finite volume schemes for Leray-Lions-type elliptic problems on general 2D meshes. Numer. Methods Partial Differential Equations, 23(1):145–195, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    S. Bartels, M. Jensen, and R. Müller. Discontinuous Galerkin finite element convergence for incompressible miscible displacement problems of low regularity. SIAM J. Numer. Anal., 47(5):3720–3743, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    L. Beirão da Veiga, J. Droniou, and G. Manzini. A unified approach for handling convection terms in finite volumes and mimetic discretization methods for elliptic problems. IMA J. Numer. Anal., 31(4):1357–1401, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    F. Brezzi, A. Buffa, and K. Lipnikov. Mimetic finite differences for elliptic problems. M2AN Math. Model. Numer. Anal., 43(2):277–295, 2009.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    F. Brezzi and M. Fortin. Mixed and hybrid finite element methods, volume 15 of Springer Series in Computational Mathematics. Springer-Verlag, New York, 1991.Google Scholar
  8. 8.
    F. Brezzi, K. Lipnikov, and V. Simoncini. A family of mimetic finite difference methods on polygonal and polyhedral meshes. Math. Models Methods Appl. Sci., 15(10):1533–1551, 2005.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    M.A. Celia, T.F. Russell, I. Herrera, and R.E. Ewing. An Eulerian-Lagrangian localized adjoint method for the advection-diffusion equation. Advances in Water Resources, 13(4):187–206, 1990.CrossRefGoogle Scholar
  10. 10.
    C. Chainais-Hillairet and J. Droniou. Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media. SIAM J. Numer. Anal., 45(5):2228–2258, 2007.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    C. Chainais-Hillairet, S. Krell, and A. Mouton. Study of discrete duality finite volume schemes for the Peaceman model. SIAM J. Sci. Comput., 35(6):A2928–A2952, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    C. Chainais-Hillairet, S. Krell, and A. Mouton. Convergence analysis of a DDFV scheme for a system describing miscible fluid flows in porous media. Numer. Methods Partial Differential Equations, 31(3):723–760, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    G. Chavent and J. Jaffré. Mathematical Models and Finite Elements for Reservoir Simulation. Studies in Mathematics and its Applications, Vol. 17. North-Holland, Amsterdam, 1986.Google Scholar
  14. 14.
    Z. Chen and R. Ewing. Mathematical analysis for reservoir models. SIAM J. Math. Anal., 30(2):431–453, 1999.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    P. G. Ciarlet and J.-L. Lions, editors. Handbook of numerical analysis. Vol. II. Handbook of Numerical Analysis, II. North-Holland, Amsterdam, 1991. Finite element methods. Part 1.Google Scholar
  16. 16.
    Y. Coudière and F. Hubert. A 3D discrete duality finite volume method for nonlinear elliptic equations. SIAM J. Sci. Comput., 33(4):1739–1764, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    M. Crouzeix and P.-A. Raviart. Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I. Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge, 7(R-3):33–75, 1973.Google Scholar
  18. 18.
    B.L. Darlow, R.E. Ewing, and M.F. Wheeler. Mixed finite element method for miscible displacement problems in porous media. Soc. Pet. Eng. J., 24(04):391–398, 1984.CrossRefGoogle Scholar
  19. 19.
    D. Antonio Di Pietro and A. Ern. Mathematical aspects of discontinuous Galerkin methods, volume 69 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Heidelberg, 2012.Google Scholar
  20. 20.
    J. Douglas, R.E. Ewing, and M.F. Wheeler. The approximation of the pressure by a mixed method in the simulation of miscible displacement. RAIRO Anal. Numér., 17(1):17–33, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    J. Douglas, Jr. The numerical solution of a compositional model in petroleum reservoir engineering. In Numerical Solution of Field Problems in Continuum Physics (Proc. Sympos. Appl. Math., Durham, N.C., 1968), SIAM-AMS Proc., Vol. II, pages 54–59. Amer. Math. Soc., Providence, R.I., 1970.Google Scholar
  22. 22.
    J. Douglas, Jr. Finite difference methods for two-phase incompressible flow in porous media. SIAM J. Numer. Anal., 20(4):681–696, 1983.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    J. Droniou. Intégration et espaces de sobolev à valeurs vectorielles. Polycopiés de l’Ecole Doctorale de Mathématiques-Informatique de Marseille, available at hal.archives-ouvertes.fr/hal-01382368, 2001.Google Scholar
  24. 24.
    J. Droniou. Finite volume schemes for diffusion equations: introduction to and review of modern methods. Math. Models Methods Appl. Sci., 24(8):1575–1619, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    J. Droniou and R. Eymard. A mixed finite volume scheme for anisotropic diffusion problems on any grid. Numer. Math., 105(1):35–71, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    J. Droniou and R. Eymard. Uniform-in-time convergence of numerical methods for non-linear degenerate parabolic equations. Numer. Math., 132(4):721–766, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    J. Droniou, R. Eymard, and P. Feron. Gradient Schemes for Stokes problem. IMA J. Numer. Anal., 36(4):1636–1669, 2016.MathSciNetCrossRefGoogle Scholar
  28. 28.
    J. Droniou, R. Eymard, T. Gallouët, C. Guichard, and R. Herbin. The gradient discretisation method. Mathematics & Applications. Springer, Heidelberg, 2018. To appear. https://hal.archives-ouvertes.fr/hal-01382358.
  29. 29.
    J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. A unified approach to mimetic finite difference, hybrid finite volume and mixed finite volume methods. Math. Models Methods Appl. Sci., 20(2):265–295, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    J. Droniou, R. Eymard, T. Gallouët, and R. Herbin. Gradient schemes: a generic framework for the discretisation of linear, nonlinear and nonlocal elliptic and parabolic equations. Math. Models Methods Appl. Sci. (M3AS), 23(13):2395–2432, 2013.Google Scholar
  31. 31.
    J. Droniou, R. Eymard, and R. Herbin. Gradient schemes: generic tools for the numerical analysis of diffusion equations. ESAIM Math. Model. Numer. Anal., 50(3):749–781, 2016.MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    J. Droniou and K.S. Talbot. On a miscible displacement model in porous media flow with measure data. SIAM J. Math. Anal., 46(5):3158–3175, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Jérôme Droniou and Kyle S. Talbot. Analysis of miscible displacement through porous media with vanishing molecular diffusion and singular wells. 2018.Google Scholar
  34. 34.
    M.G. Edwards and C.F. Rogers. Finite volume discretization with imposed flux continuity for the general tensor pressure equation. Comput. Geosci., 2(4):259–290, 1998.MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    A. Ern and J.-L. Guermond. Theory and practice of finite elements, volume 159 of Applied Mathematical Sciences. Springer-Verlag, New York, 2004.Google Scholar
  36. 36.
    R.E. Ewing. Problems arising in the modeling of processes for hydrocarbon recovery. In R.E. Ewing, editor, The Mathematics of Reservoir Simulation, Frontiers in Applied Mathematics, pages 3–34. SIAM, Philadelphia, 1983.CrossRefGoogle Scholar
  37. 37.
    R.E. Ewing, T.F. Russell, and M.F. Wheeler. Convergence analysis of an approximation of miscible displacement in porous media by mixed finite elements and a modified method of characteristics. Comput. Methods Appl. Mech. Engrg., 47(1-2):73–92, 1984.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    R.E. Ewing and M.F. Wheeler. Galerkin methods for miscible displacement problems in porous media. SIAM J. Numer. Anal., 17(3):351–365, 1980.MathSciNetCrossRefzbMATHGoogle Scholar
  39. 39.
    R.E. Ewing and M.F. Wheeler. Galerkin methods for miscible displacement problems with point sources and sinks—unit mobility ratio case. In Mathematical methods in energy research (Laramie, Wyo., 1982/1983), pages 40–58. SIAM, Philadelphia, PA, 1984.Google Scholar
  40. 40.
    R. Eymard, P. Feron, and C. Guichard. Family of convergent numerical schemes for the incompressible Navier-Stokes equations. Mathematics and Computers in Simulation, 144(C):196–218, 2018.Google Scholar
  41. 41.
    R. Eymard, T. Gallouët, C. Guichard, R. Herbin, and R. Masson. TP or not TP, that is the question. Comput. Geosci., 18(3-4):285–296, 2014.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    R. Eymard, T. Gallouët, and R. Herbin. Discretization of heterogeneous and anisotropic diffusion problems on general nonconforming meshes SUSHI: a scheme using stabilization and hybrid interfaces. IMA J. Numer. Anal., 30(4):1009–1043, 2010.MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    R. Eymard, C. Guichard, and R. Herbin. Small-stencil 3D schemes for diffusive flows in porous media. ESAIM Math. Model. Numer. Anal., 46(2):265–290, 2012.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    R. Eymard, C. Guichard, and R. Masson. Grid orientation effect in coupled finite volume schemes. IMA J. Numer. Anal., 33(2):582–608, 2013.MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    P. Fabrie and T. Gallouët. Modelling wells in porous media flow. Math. Models Methods Appl. Sci., 10(5):673–709, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    X. Feng. On existence and uniqueness results for a coupled system modeling miscible displacement in porous media. J. Math. Anal. Appl., 194(3):883–910, 1995.MathSciNetCrossRefzbMATHGoogle Scholar
  47. 47.
    X. Feng. Recent developments on modeling and analysis of flow of miscible fluids in porous media. In Fluid flow and transport in porous media: mathematical and numerical treatment (South Hadley, MA, 2001), volume 295 of Contemp. Math., pages 229–240. Amer. Math. Soc., Providence, RI, 2002.Google Scholar
  48. 48.
    Raphaèle Herbin and Florence Hubert. Benchmark on discretization schemes for anisotropic diffusion problems on general grids. In Finite volumes for complex applications V, pages 659–692. ISTE, London, 2008.Google Scholar
  49. 49.
    F. Hermeline. Approximation of diffusion operators with discontinuous tensor coefficients on distorted meshes. Comput. Methods Appl. Mech. Engrg., 192(16-18):1939–1959, 2003.MathSciNetCrossRefzbMATHGoogle Scholar
  50. 50.
    J. Li, B. Rivière, and N. Walkington. Convergence of a high order method in time and space for the miscible displacement equations. ESAIM Math. Model. Numer. Anal., 49(4):953–976, 2015.MathSciNetCrossRefzbMATHGoogle Scholar
  51. 51.
    R. J. Moitsheki, P. Broadbridge, and M. P. Edwards. Symmetry solutions for transient solute transport in unsaturated soils with realistic water profile. Transp. Porous Media, 61(1):109–125, 2005.MathSciNetCrossRefGoogle Scholar
  52. 52.
    R. J. Moitsheki, P. Broadbridge, and M. P. Edwards. Group invariant solutions for two dimensional solute transport under realistic water flows. Quaest. Math., 29(1):73–83, 2006.MathSciNetCrossRefzbMATHGoogle Scholar
  53. 53.
    D.W. Peaceman. Improved treatment of dispersion in numerical calculation of multidimensional miscible displacement. Soc. Pet. Eng. J., 6(3):213–216, 1966.CrossRefGoogle Scholar
  54. 54.
    D.W. Peaceman. Fundamentals of Numerical Reservoir Simulation. Elsevier, New York, 1977.Google Scholar
  55. 55.
    D.W. Peaceman and H.H. Rachford Jr. Numerical calculation of multidimensional miscible displacement. Soc. Pet. Eng. J., 2(4):327–339, 1962.CrossRefGoogle Scholar
  56. 56.
    B.M. Rivière and N.J. Walkington. Convergence of a discontinuous Galerkin method for the miscible displacement equation under low regularity. SIAM J. Numer. Anal., 49(3):1085–1110, 2011.MathSciNetCrossRefzbMATHGoogle Scholar
  57. 57.
    T.F. Russell. Finite elements with characteristics for two-component incompressible miscible displacement. In Proceedings of the 6th SPE Symposium on Reservoir Simulation, pages 123–135, New Orleans, 1982. Society of Petroleum Engineers.Google Scholar
  58. 58.
    T.F. Russell. Time stepping along characteristics with incomplete iteration for a galerkin approximation of miscible displacement in porous media. SIAM J. Numer. Anal., 22(5):970–1013, 1985.MathSciNetCrossRefzbMATHGoogle Scholar
  59. 59.
    T.F. Russell and M.F. Wheeler. Finite element and finite difference methods for continuous flows in porous media. In The mathematics of reservoir simulation, volume 1 of Frontiers in Applied Mathematics, pages 35–106. SIAM, Philadelphia, 1983.Google Scholar
  60. 60.
    S. Sun, B. Rivière, and M.F. Wheeler. A combined mixed finite element and discontinuous Galerkin method for miscible displacement problem in porous media. In Recent progress in computational and applied PDEs (Zhangjiajie, 2001), pages 323–351. Kluwer/Plenum, New York, 2002.Google Scholar
  61. 61.
    H. Wang, D. Liang, R.E. Ewing, S.L. Lyons, and G. Qin. An approximation to miscible fluid flows in porous media with point sources and sinks by an Eulerian-Lagrangian localized adjoint method and mixed finite element methods. SIAM J. Sci. Comput., 22(2):561–581, 2000.MathSciNetCrossRefzbMATHGoogle Scholar
  62. 62.
    M.F. Wheeler and B.L. Darlow. Interior penalty Galerkin procedures for miscible displacement problems in porous media. In Computational methods in nonlinear mechanics (Proc. Second Internat. Conf., Univ. Texas, Austin, Tex., 1979), pages 485–506. North-Holland, Amsterdam-New York, 1980.Google Scholar

Copyright information

© SFoCM 2018

Authors and Affiliations

  • Jérôme Droniou
    • 1
  • Robert Eymard
    • 2
  • Alain Prignet
    • 2
  • Kyle S.  Talbot
    • 1
  1. 1.School of Mathematical SciencesMonash UniversityClaytonAustralia
  2. 2.Laboratoire d’Analyse et de Mathématiques AppliquéesUniversité Paris-Est, UMR 8050Marne-la-Vallée Cedex 2France

Personalised recommendations