The relative importance of spatial and environmental processes in the assembly of larval Chironomidae (Insecta, Diptera) communities along a transition landscape in southern Brazilian streams

Abstract

Metacommunity structure of stream invertebrates is contingent on complex interplays between species dispersal ability, spatial extent and watershed environmental specificities. Previous studies showed that high diversity of Chironomidae (Insecta, Diptera) is observed in southern Brazilian montane streams, although the knowledge of the processes driving such high diversity is poorly comprehended. In this study, we evaluated the relative contribution of environmental (in-stream and landscape) and spatial drivers to the metacommunity structure of larval Chironomidae in a watershed (N = 40 stream reaches) running across a forest–grassland transition landscape in southern Brazil. Overall, 51 taxa were recorded in the study region. We found similar contributions of the environmental (in-stream and landscape) and spatial (broad- and fine-scale spatial drivers) fractions to the metacommunity structure of larval Chironomidae. Our results suggest that environmental processes likely associated with the elevation and stream longitudinal gradients predominated in the assembly of the metacommunity structure of larval Chironomidae. Additionally, mass effects (exchange of individuals via dispersal) possibly associated with the short-range drift or flight and the contact zone between the fauna from each biome also accounted for the observed pattern. Finally, dispersal limitation associated with the spatial extent and the topographic heterogeneity of the study region likely played a minor role in the assembly of Chironomidae metacommunity structure.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Allan JD, Castillo MM (2007) Stream Ecology: Structure and Function of Running Waters. Springer, Dordrecht

    Google Scholar 

  2. Alvares CA, Stape JL, Sentelhas PC, Gonçalves JLM, Gerd Sparovek (2014) Köppen's climate classification map for Brazil. Meteorol Zeitschrift 22:711728. https://doi.org/10.1127/0941-2948/2013/0507

    Article  Google Scholar 

  3. Amorim RM, Henriques-Oliveira AL, Nessimian JL (2004) Distribuição espacial e temporal das larvas de Chironomidae (Insecta: Diptera) na seção ritral do rio Cascatinha, Nova Friburgo, Rio de Janeiro, Brasil. Lundiana 5:119–127

    Google Scholar 

  4. Armitage PD (1995) The Chironomidae. Springer, Dordrecht

    Google Scholar 

  5. Blanchet G, Legendre P, Borcard D (2008) Forward selection of spatial explanatory variables. Ecology 89:2623–2632. https://doi.org/10.1890/07-0986.1

    Article  Google Scholar 

  6. Borcard D, Legendre P, Avois-Jacquet C, Tuomisto H (2004) Dissecting the spatial structure of ecological data at multiple scales. Ecology 85:1826–1832. https://doi.org/10.1890/03-3111

    Article  Google Scholar 

  7. Borcard D, Gillet F, Legendre P (2018) Numerical Ecology with R. Springer, Cham

    Google Scholar 

  8. Brancalion PHS, Garcia LC, Loyola R, Rodrigues RR, Pillar VD, Lewinsohn TM (2016) A critical analysis of the Native Vegetation Protection Law of Brazil (2012): updates and ongoing initiatives. Perspect Ecol Conserv 14:1–15. https://doi.org/10.1016/j.ncon.2016.03.003

    Article  Google Scholar 

  9. Brasil LS, Andrade AL, Calvão LB, Dias-Silva K, Faria APJ, Shimano Y, Oliveira-Junior JMB, Cardoso MN, Juen L (2020) Aquatic insects and their environmental predictors: a scientometric study focused on environmental monitoring in lotic environmental. Environ Monit Assess 192:1–10. https://doi.org/10.1007/s10661-020-8147-z

    Article  Google Scholar 

  10. Brown BL, Swan CM (2010) Dendritic network structure constrains metacommunity properties in riverine ecosystems. J Anim Ecol 79:571–580. https://doi.org/10.1111/j.1365-2656.2010.01668.x

    CAS  Article  Google Scholar 

  11. Brown BL, Swan CM, Auerbach DA, Campbell GEH, Hitt NP, Maloney KO, Patrick C (2011) Metacommunity theory as a multispecies, multiscale framework for studying the influence of river network structure on riverine communities and ecosystems. J North Am Benthol Soc 30:310–327. https://doi.org/10.1899/10-129.1

    Article  Google Scholar 

  12. Brown BL, Sokol ER, Skelton J, Tornwall B (2017) Making sense of metacommunities: dispelling the mythology of a metacommunity typology. Oecologia 183:643–652

    Article  Google Scholar 

  13. Cañedo-Argüelles M, Boersma KS, Bogan MT, Olden JD, Phillipsen I, Schriever TA, Lyt DA (2015) Dispersal strength determines meta-community structure in a dendritic riverine network. J Biogeogr 42:778–790. https://doi.org/10.1111/jbi.12457

    Article  Google Scholar 

  14. Corbi JJ, Trivinho-Strixino S (2008) Effects of land use on lotic chironomid communities of southeast Brazil: Emphasis on the impact of sugar cane cultivation. Boletim do Museu Municipal do Funchal 13:93–100

    Google Scholar 

  15. Cordeiro JLP, Hasenack H (2009) Cobertura vegetal atual do Rio Grande do Sul. Campos sulinos: conservação e uso sustentável da biodiversidade. Ministério do Meio Ambiente, Brasília, pp 285–299

  16. Corkum LD (1990) Intrabiome distributional patterns of lotic macroinvertebrate assemblages. Can J Fish Aquat Sci 47:2147–2157

    Article  Google Scholar 

  17. Corkum LD (1992) Spatial distributional patterns of macroinvertebrates along rivers within and among biomes. Hydrobiologia 239:101–114

    Article  Google Scholar 

  18. Cummins KW, Klug MJ (1979) Feeding ecology of stream invertebrates. Annu Rev Ecol Syst 10:147–172

    Article  Google Scholar 

  19. Dodds WK, Bruckerhoff L, Batzer D, Schechner A, Pennock C, Renner E, Tromboni F, Bigham K, Grieger S (2019) The freshwater biome gradient framework: predicting macroscale properties based on latitude, altitude, and precipitation. Ecosphere 10:1–33. https://doi.org/10.1002/ecs2.2786

    Article  Google Scholar 

  20. Dray S, Dufour A (2007) The ade4 Package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20. https://doi.org/10.18637/jss.v022.i04

    Article  Google Scholar 

  21. Epler JH (2001) Identification manual for the larval Chironomidae (Diptera) of North and South Carolina. A guide to the taxonomy of the midges of the southeastern United States, including Florida. North Carolina Department of Environment and Natural Resources, Raleigh, North Carolina, and St. Johns River Water Management District, Palatka, Florida, USA

  22. Ferrington LC (1984) Drift dynamics of Chironomidae larvae: I. Preliminary results and discussion of importance of mesh size and level of taxonomic identification in resolving Chironomidae diel drift patterns. Hydrobiologia 114:215–227. https://doi.org/10.1007/BF00031873

    Article  Google Scholar 

  23. Floss ECS, Kotzian CB, Spies MR, Secretti E (2012) Diversity of non-biting midge larvae assemblages in the Jacuí River Basin, Brazil. J Insect Sci 12:1–33. https://doi.org/10.1673/031.012.12101

    Article  Google Scholar 

  24. Griffith DA, Peres-Neto PR (2006) Spatial modelling in ecology: the flexibility of eigenfunction spatial analyses. Ecology 87:2603–2613. https://doi.org/10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2

    Article  PubMed  Google Scholar 

  25. Grönroos M, Heino J, Siqueira T, Landeiro VL, Kotanen J, Bini LM (2013) Metacommunity structuring in stream networks: roles of dispersal mode, distance type, and regional environmental context. Ecol Evol 3:4473–4487. https://doi.org/10.1002/ece3.834

    Article  PubMed  PubMed Central  Google Scholar 

  26. He S, Soininen J, Deng G, Wang B (2020) Metacommunity structure of stream insects across three hierarchical spatial scales. Ecol Evol 10:2874–2884. https://doi.org/10.1002/ece3.6103

    Article  PubMed  PubMed Central  Google Scholar 

  27. Heino J, Melo AS, Siqueira T, Soininen J, Valanko S, Bini LM (2015) Metacommunity organisation, spatial extent and dispersal in aquatic systems: patterns, processes and prospects. Freshw Biol 60:845–869. https://doi.org/10.1111/fwb.12533

    Article  Google Scholar 

  28. Henriques-Oliveira A, Dorvillé L, Nessimian J (2003) Distribution of Chironomidae larvae fauna (Insecta: Diptera) on different substrates in a stream at Floresta da Tijuca, RJ, Brazil. Acta Limnol Bras 15:69–84

    Google Scholar 

  29. Jacobsen D (2008) Tropical high-altitude streams. In: Dudgeon D (ed) Tropical stream ecology. Elsevier, EUA, San Diego, pp 219–256

    Google Scholar 

  30. Kilca RV, Longhi SJ (2011) A composição florística e a estrutura das florestas secundárias no rebordo do Planalto Meridional. In: Schumacher MV, Longhi SJ, Brun EJ, Kilca RV (eds) A Floresta Estacional Subtropical: caracterização e ecologia no planalto meridional. Universidade Federal de Santa Maria, Santa Maria, pp 53–84

    Google Scholar 

  31. König R, Santos S (2013) Chironomidae (Insecta: Diptera) of different habitats and microhabitats of the Vacacaí-Mirim River microbasin, Southern Brazil. An Acad Bras 85:975–985. https://doi.org/10.1590/S0001-37652013000300010

    Article  Google Scholar 

  32. Kotzian CB, Martello AR, Santin LF et al (2014) Macroinvertebrados aquáticos de rios e riachos da encosta do planalto, na região central do estado do Rio Grande do Sul (Brasil). Ciência Natura 36:627–651. https://doi.org/10.5902/2179460X12949

    Article  Google Scholar 

  33. Kotzian CB, Pires MM, Hepp LU (2020) Effects of spatial distances on the assemblage dissimilarity of macroinvertebrates with different dispersal pathways and abilities in southern Brazilian streams. Ecol Res 35:826–837. https://doi.org/10.1111/1440-1703.12149

    Article  Google Scholar 

  34. Landeiro VL, Bini LM, Melo AS, Pes AMO, Magnusson WE (2012) The roles of dispersal limitation and environmental conditions in controlling caddisfly (Trichoptera) assemblages. Freshw Biol 57:1554–1564. https://doi.org/10.1111/j.1365-2427.2012.02816.x

    Article  Google Scholar 

  35. Legendre P, Gallagher ED (2001) Ecologically meaningful transformations for ordination of species data. Oecologia 129:271–280

    Article  Google Scholar 

  36. Legendre P, Legendre LF (2012) Numerical Ecology. Elsevier, Amsterdam

    Google Scholar 

  37. Leibold M, Chase J (2018) Processes in metacommunities. In: Metacommunity Ecology. Princeton University Press, Princeton, Oxford, pp 49–89. https://doi.org/10.2307/j.ctt1wf4d24.6

  38. Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez LA (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. https://doi.org/10.1111/j.1461-0248.2004.00608.x

    Article  Google Scholar 

  39. Lencioni V, Marziali L, Rossaro B (2012) Chironomids as bioindicators of environmental quality in mountain springs. Freshw Sci 31:525–541

    Article  Google Scholar 

  40. Leps M, Tonkin JD, Dahm V, Haase P, Sundermann A (2015) Disentangling environmental drivers of benthic invertebrate assemblages: the role of spatial scale and riverscape heterogeneity in a multiple stressor environment. Sci Total Environ 536:546–556. https://doi.org/10.1016/j.scitotenv.2015.07.083

    CAS  Article  PubMed  Google Scholar 

  41. Logue JB, Mouquet N, Peter H, Hillebrand H (2011) Empirical approaches to metacommunities: a review and comparison with theory. Trends Ecol Evol 26:482–491. https://doi.org/10.1016/j.tree.2011.04.009

    Article  Google Scholar 

  42. Loskutova OA, Zelentsov NI, Shcherbina GK (2015) Fauna of chironomids (Diptera, Chironomidae) of the Kolva River (Pechora basin) in conditions of oil pollution. Inland Water Biol 8:276–286

    Article  Google Scholar 

  43. Maloney KO, Munguia P (2011) Distance decay of similarity in temperate aquatic communities: effects of environmental transition zones, distance measure, and life histories. Ecography 34:287–295. https://doi.org/10.1111/j.1600-0587.2010.06518.x

    Article  Google Scholar 

  44. Marcuzzo S, Pagel SM, Chiappetti MIS (1998) A Reserva da Biosfera da Mata Atlântica no Rio Grande do Sul—situação atual, ações e perspectivas. Conselho Nacional da Reserva da Biosfera da Mata Atlântica, São Paulo

    Google Scholar 

  45. Marziali L, Rossaro B (2013) Response of chironomid species (Diptera, Chironomidae) to water temperature: effects on species distribution in specific habitats. J Entomol Acarol Res 45:73–89. https://doi.org/10.4081/jear.2013.e14

    Article  Google Scholar 

  46. Mazão GR, Bispo PC (2016) The influence of physical instream spatial variability on Chironomidae (Diptera) assemblages in Neotropical streams. Limnologica 60:1–15. https://doi.org/10.1016/j.limno.2016.03.004

    Article  Google Scholar 

  47. McLachlan AJ (1983) Life-history tactics of rain-pool dwellers. J Anim Ecol 52:545–561

    Article  Google Scholar 

  48. Medina A, Paggi A (2004) Composición y abundancia de Chironomidae (Diptera) en un río serrano de zona semiárida (San Luis, Argentina). Rev Soc Entomol Argent 63:107–118

    Google Scholar 

  49. Medina A, Scheibler EE, Paggi A (2008) Distribución de Chironomidae (Diptera) en dos sistemas fluviales ritrónicos (Andino-serrano) de Argentina. Rev Soc Entomol Argent 67:69–79

    Google Scholar 

  50. Nava D, Restello RM, Hepp LU (2015) Intra- and inter-annual variations in Chironomidae (Insecta: Diptera) communities in subtropical streams. Zoologia 32:207–214. https://doi.org/10.1590/S1984-46702015000300005

    Article  Google Scholar 

  51. Nekola JC, White PS (1999) The distance decay of similarity in biogeography and ecology. J Biogeogr 26:867–878. https://doi.org/10.1046/j.1365-2699.1999.00305.x

    Article  Google Scholar 

  52. Nicacio G, Juen L (2018) Relative roles of environmental and spatial constraints in assemblages of Chironomidae (Diptera) in Amazonian floodplain streams. Hydrobiologia 820:201–213

    Article  Google Scholar 

  53. Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’hara, RB, (2013) Package ‘vegan.’ Community Ecol Package 2:1–88

    Google Scholar 

  54. Olson D, Dinerstein E, Wikramanayake E, Burgess N, Powell G, Underwood E, D’amico JA, Itoua I, Strand HE, Morrison JC, Loucks CJ, Allnutt T, Ricketts T, Kura Y, Lamoreux J, Wettengel W, Hedao P, Kassem K (2001) Terrestrial ecoregions of the world: A new map of life on earth. Bioscience 51:933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2

    Article  Google Scholar 

  55. Padial AA, Ceschin F, Declerck SAJ, De Meester L, Bonecker CC, Lansac-Tôha FA, Rodrigues L, Rodrigues LC, Train S, Velho LFM, Bini LM (2014) Dispersal ability determines the role of environmental, spatial and temporal drivers of metacommunity structure. PLoS ONE 9:1–8. https://doi.org/10.1371/journal.pone.0111227

    CAS  Article  Google Scholar 

  56. Peres-Neto PR, Legendre P, Dray S, Borcard D (2006) Variation partitioning of species data matrices: estimation and comparison of fractions. Ecology 87:2614–2625. https://doi.org/10.1890/0012-9658(2006)87[2614:VPOSDM]2.0.CO;2

    Article  Google Scholar 

  57. Principe RE, Boccolini MF, Corigliano MC (2008) Structure and spatial-temporal dynamics of chironomidae fauna (Diptera) in upland and lowland fluvial habitats of the Chocancharava River basin (Argentina). Int Rev Hydrobiol 93:342–357. https://doi.org/10.1002/iroh.200710974

    Article  Google Scholar 

  58. R Core Team (2019) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  59. Rae JG (2004) The colonization response of lotic chironomid larvae to substrate size and heterogeneity. Hydrobiol 524:115–124

    Article  Google Scholar 

  60. Restello RM, Biasi C, Moraes PFMB, Gabriel G, Hepp LU (2014) Composition and diversity of the Chironomidae in subtropical streams: effects of environmental predictors and temporal analysis. Acta Limnol Bras 26:215–226. https://doi.org/10.1590/S2179-975X2014000200011

    Article  Google Scholar 

  61. Roque FO, Siqueira T, Bini LM, Ribeiro MC, Tambosi LR, Ciocheti G, Trivinho-Strixino S (2010) Untangling associations between chironomid taxa in Neotropical streams using local and landscape filters. Freshw Biol 55:847–865. https://doi.org/10.1111/j.1365-2427.2009.02314.x

    Article  Google Scholar 

  62. Saito VS, Fonseca-Gessner AA (2014) Taxonomic composition and feeding habits of Chironomidae in Cerrado streams (Southeast Brazil): impacts of land use changes. Acta Limnol Bras 26:35–46. https://doi.org/10.1590/S2179-975X2014000100006

    Article  Google Scholar 

  63. Salvarrey AVB, Kotzian CB, Spies MR, Braun B (2014) The influence of natural and anthropic environmental variables on the structure and spatial distribution along longitudinal gradient of macroinvertebrate communities in southern Brazilian streams the influence of natural and anthropic environmental variables. J Insect Sci 14:1–23. https://doi.org/10.1093/jis/14.1.13

    Article  Google Scholar 

  64. Sanseverino AM, Nessimian JL (2001) Hábitats de larvas de Chironomidae em riachos de Mata Atlântica no Estado de RJ. Acta Limnol Bras 13:29–38

    Google Scholar 

  65. Scheibler EE, Pozo V, Paggi AC (2008) Distribución espacio-temporal de larvas de Chironomidae (Diptera) en un arroyo andino (Uspallata, Mendoza, Argentina). Rev Soc Entomol Argent 67:45–58

    Google Scholar 

  66. Scheibler E, Roig-Juñent S, Claps M (2014) Chironomid (Insecta: Diptera) assemblages along an Andean altitudinal gradient. Aquat Biol 20:169–184. https://doi.org/10.3354/ab00554

    Article  Google Scholar 

  67. Sensolo D, Hepp LU, Decian V, Restello RM (2012) Influence of landscape on assemblages of Chironomidae in Neotropical streams. Ann Limnol 48:391–400. https://doi.org/10.1051/limn/2012031

    Article  Google Scholar 

  68. Smith RF, Venugopal PD, Baker ME, Lamp WO (2015) Habitat filtering and adult dispersal determine the taxonomic composition of stream insects in an urbanizing landscape. Freshw Biol 60:1740–1754. https://doi.org/10.1111/fwb.12605

    Article  Google Scholar 

  69. Soininen J (2014) A quantitative analysis of species sorting across organisms and ecosystems. Ecology 95:3284–3292. https://doi.org/10.1890/13-2228.1

    Article  Google Scholar 

  70. Tejerina EG, Malizia A (2012) Chironomidae (Diptera) larvae assemblages differ along an altitudinal gradient and temporal periods in a subtropical montane stream in Northwest Argentina. Hydrobiologia 686:41–54

    CAS  Article  Google Scholar 

  71. Tonkin JD, Altermatt F, Finn DS, Heino J, Olden JD, Pauls SU, Lytle DA (2018) The role of dispersal in river network metacommunities: Patterns, processes, and pathways. Freshw Biol 63:141–163. https://doi.org/10.1111/fwb.13037

    Article  Google Scholar 

  72. Trivinho-Strixino S (2011a) Chironomidae (Insecta, Diptera, Nematocera) do Estado de São Paulo, Sudeste do Brasil. Biota Neotrop 11:675–684

    Article  Google Scholar 

  73. Trivinho-Strixino S (2011b) Larvas de Chironomidae: Guia de Identificação. Universidade Federal de São Carlos, São Carlos

    Google Scholar 

  74. Valente-Neto F, Saito VS, Siqueira T, Fonseca-Gessner AA (2016) Evidence of species sorting driving aquatic beetles associated with woody debris in a transitional region between Cerrado and Atlantic Forest biomes. Aquatic Ecol 50:209–220. https://doi.org/10.1007/s10452-016-9569-0

    CAS  Article  Google Scholar 

  75. van Rensburg BJ, Levin N, Kark S (2009) Spatial congruence between ecotones and range-restricted species: implications for conservation biogeography at the sub-continental scale. Divers Distrib 15:379–389. https://doi.org/10.1111/j.1472-4642.2008.00545.x

    Article  Google Scholar 

  76. Vieira EF (1984) Rio Grande do Sul: geografia física e vegetação. Sagra, Porto Alegre

    Google Scholar 

  77. Waters TF (1972) The drift of stream insects. Ann Rev Entomol 17:253–272

    Article  Google Scholar 

  78. Wentworth CK (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392. https://doi.org/10.1086/622910

    Article  Google Scholar 

  79. Winegardner AK, Jones BK, Ng ISY, Siqueira T, Cottenie K (2012) The terminology of metacommunity ecology. Trends Ecol Evol 27:253–254. https://doi.org/10.1016/j.tree.2012.01.007

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Elzira Cecília Serafini Floss for granting access to the bibliographic database. We are grateful to the team of the former Laboratory of Aquatic Macroinvertebrates of the UFSM for their help in fieldwork and to the Ecology and Evolution Department of UFSM for providing logistic support to the sampling effort. CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) supported MMP with a postdoctoral fellowship (process 159829/2019-4).

Author information

Affiliations

Authors

Contributions

CBK conceived the project and participated in the drafting of the manuscript. ES and MMP participated in the sampling collection. MFM and ES carried out specimen identification. CBK, MFM and MMP conducted the data analysis and participated in the drafting of the manuscript. All authors approved the final version of the manuscript.

Corresponding author

Correspondence to Mateus Marques Pires.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Ethical standards

The original research projects (numbers 022778 and 025998) were approved by the Project Office (GAP) of the Centro de Ciências Naturais e Exatas (CCNE) of the Universidade Federal de Santa Maria (UFSM).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Eric Larson.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (XLS 66 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maxwell, M.F., Secretti, E., Pires, M.M. et al. The relative importance of spatial and environmental processes in the assembly of larval Chironomidae (Insecta, Diptera) communities along a transition landscape in southern Brazilian streams. Limnology (2021). https://doi.org/10.1007/s10201-021-00652-4

Download citation

Keywords

  • Community structure
  • Freshwater insects
  • Lotic ecosystems
  • Montane streams
  • Neotropical region