Dam promotes downriver functional homogenization of phytoplankton in a transitional river-reservoir system in Amazon

Abstract

Dams disrupt the longitudinal gradient and decrease the natural connectivity of lotic systems and change the physical, chemical, and biological compartments of the river environment. Here, we investigated the effects of damming and seasonal variation in environmental conditions and richness, density, taxonomic and functional beta diversity patterns of phytoplankton, through dry and rainy seasons (of 2011 and 2012), among four zones (upriver, reservoir, dam, downriver) of the Tucuruí dam (Tocantins River sub-basin, eastern Amazon, Brazil). Species were quantified and classified into three functional traits (size class, floating, life form) used to estimate functional beta diversity. We showed that water transparency was higher in the dam, and dry periods presented higher total phosphorus. Our results also demonstrated that the dam promotes species turnover between zones and seasonal periods and that the functional morphological groups respond to local limnological conditions. However, the dam led to a reduction in functional beta diversity—functional homogenization—of phytoplankton species, mainly downstream. We demonstrated that the dam is promoting unfavorable conditions and reducing the environmental heterogeneity, leading to a significant loss of functional traits variation between phytoplankton communities, which compromises the ecosystem processes provided by phytoplankton.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Agostinho AA, Pelicice FM, Gomes LC (2008) Dams and the fish fauna of the Neotropical region: impacts and management related to diversity and fisheries. Braz J Biol 68:1119–1132

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  2. Agostinho AA, Gomes LC, Santos NCL, Ortega JCG, Pelicice FM (2016) Fish assemblages in Neotropical reservoirs: colonization patterns, impacts and management. Fish Res 173:26–36. https://doi.org/10.1016/j.fishres.2015.04.006

    Article  Google Scholar 

  3. Amaral JHF, Borge AV, Melack JM, Sarmento H, Barbosa PM, Kasper D, de Melo ML, de Fex-Wolf D, da Silva JS, Forsberg BR (2018) Influence of plankton metabolism and mixing depth on CO2 dynamics in an Amazon floodplain lake. Sci Total Environ 630:1381–1393

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  4. Anagnostidis K, Komárek J (1985) Modern approach to the classification of cyanophytes.1-introduction. Arch Hydrobiol 71 (1/2): 291–302

  5. Anderson MJ, Gorley RN, Clarke RK (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER-E, Plymouth

    Google Scholar 

  6. APHA, Awwa, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington

    Google Scholar 

  7. Aula I, Braunschweiler H, Malin I (1995) The watershed flux of mercury examined with indicators in the Tucuruí reservoir in Pará Brazil. Sci Total Environ 175:97–107

    CAS  Article  Google Scholar 

  8. Baselga A, Orme D (2012a) Betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812

    Article  Google Scholar 

  9. Baselga A, Orme D (2012b) Betapart: an R package for the study of beta diversity. Methods Ecol Evol 3:808–812

    Article  Google Scholar 

  10. Becker V, Huszar VLM, Crossetti LO (2009) Responses of phytoplankton functional groups to the mixing regime in a deep subtropical reservoir. Hydrobiologia 628:137–151. https://doi.org/10.1007/s10750-009-9751-7

    Article  Google Scholar 

  11. Bichoff A, Osório NC, Ruwer DT, Montoya KLA, Dunck B, Liliana Rodrigues L (2017) Influence of tributaries on the periphytic diatom community in a floodplain. Acta Limnol Bras 29:e110

    Article  Google Scholar 

  12. Bicudo CEM, Bicudo RMT (1970) Algae from Brazilian continental waters: illustrated key for gender identification. (in Portuguese, Algas de águas continentais brasileiras: chave ilustrada para identificação de gêneros). Fundação Brasileira para o Desenvolvimento do Ensino das Ciências, São Paulo

  13. Bicudo CEM, Menezes M (2006) Genus of Algae of Continental waters of Brazil. Key for identification and description (in Portuguese, Gênero de Algas de águas Continentais do Brasil. Chave para identificação e descrição), 2nd edn. Publisher Rima, São Carlos

    Google Scholar 

  14. Bonilla S, Aubriot L, Soares MCS, González-Piana M, Fabre A, Huszar VLM, Lürling AD, Padisák J, Kruk C (2012) What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiol. Ecol 79:594–607

    CAS  Google Scholar 

  15. Cadotte MW, Carscadden K, Mirotchnick N (2011) Beyond species: functional diversity and the maintenance of ecological processes and services. J Appl Ecol 48:1079–1087. https://doi.org/10.1111/j.1365-2664.2011.02048.x

    Article  Google Scholar 

  16. Cardoso S, Nabout JC, Farjalla VF, Lopes PM, Bozelli RL, Huszar VLM, Roland F (2017) Environmental factors driving phytoplankton taxonomic and functional diversity in Amazonian floodplain lakes. Hydrobiologia 802:115–130

    CAS  Article  Google Scholar 

  17. Carey CC, Ibelings BW, Hoffmann EP, Hamilton DP, Brookes JD (2012) Eco-physiological adaptations that favour freshwater cyanobacteria in a changing climate. Water Res 46:1394–1407

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. Castro NO, Moser GAO (2012) Florações de algas nocivas e seus efeitos ambientais. Oecol Aust 16(2):235–264. https://doi.org/10.4257/oeco.2012.1602.05

    Article  Google Scholar 

  19. Chellappa NT, Chellappa T, Câamara FRA, Rocha O, Chellappa S (2009) Impact of stress and disturbance factors on the phytoplankton communities in Northeastern Brazil reservoir. Limnologica 39:273–282

    Article  Google Scholar 

  20. Chessel D, Dufour AB, Thioulouse J (2004) The ade4 package-I-one-table methods. R News 4:5–10

    Google Scholar 

  21. Crossetti LO, Bicudo CEM (2008) Adaptations in phytoplankton life strategies to imposed change in a shallow urban tropical eutrophic reservoir, Garças Reservoir, over eight years. Hydrobiologia 614:91–105

    Article  Google Scholar 

  22. da Silva IG, Pelicice FM, Rodrigues LC (2020) Loss of phytoplankton functional and taxonomic diversity induced by river regulation in a large tropical river. Hydrobiologia 847:3471–3485. https://doi.org/10.1007/s10750-020-04355-2

    Article  Google Scholar 

  23. Daga VD, Skóra F, Padial AA, Abilhoa V, Gubiani EA, Vitule JRS (2015) Homogenization dynamics of the fish assemblages in Neotropical reservoirs: comparing the roles of introduced species and their vectors. Hydrobiologia 746:327–347

    Article  Google Scholar 

  24. Dantas EW, Moura AN, Bittencourt-Oliveira MC (2011) Cyanobacterial blooms in stratified and destratified eutrophic reservoirs in semi-arid region of Brazil. An Acad Bras Cienc 83(4):1327–1338

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  25. Dantas EW, Moura AN, Bittencourt-Oliveira MC (2012) Dynamics of phytoplankton associations in three reservoirs in northeastern Brazil assessed using Reynolds’ theory. Limnologica 42:72–80

    CAS  Article  Google Scholar 

  26. Deus R, Brito D, Kenov IA, Lima M, Costa V, Medeiros A, Neves R, Alves CN (2013a) Three-dimensional model for analysis of spatial and temporal patterns of phytoplankton in Tucuruí reservoir, Pará. Brazil Ecol Model 253:28–43. https://doi.org/10.1016/j.ecolmodel.2012.10.013

    Article  Google Scholar 

  27. Deus R, Brito D, Mateus M, Kenov I, Fornaro A, Neves R, Alves CN (2013b) Impact evaluation of a pisciculture in the Tucuruí reservoir (Pará, Brazil) using a two-dimensional water quality model. J Hydrol 487:1–12. https://doi.org/10.1016/j.jhydrol.2013.01.022

    Article  Google Scholar 

  28. Dunck B, Schneck F, Rodrigues L (2016) Patterns in species and functional dissimilarity: insights from periphytic algae in subtropical floodplain lakes. Hydrobiologia 763:237–247

    Article  Google Scholar 

  29. Dunck B, Felisberto SA, Nogueira SI (2019) Effects of freshwater eutrophication on species and functional beta diversity of periphytic algae. Hydrobiologia 837:195–204

    Article  Google Scholar 

  30. Gulati RD, van Donk E (2002) Lakes in the Netherlands, their origin, Eutrophication and restoration:state-of-the-art review. Hydrobiologia 478:73–106

    Article  Google Scholar 

  31. Huisman J, Matthijs HCP, Visser PM (eds) (2005) Harmful cyanobacteria. Springer, Netherlands, Heidelberg

    Google Scholar 

  32. Kassambara A (2020) rstatix: Pipe-friendly framework for basic statistical tests. R package version 0.5.0. https://cran.r-project.org/package=rstatix

  33. Kembel SW, Cowan PD, Helmus MR et al (2010) Picante: r tools for integrating phylogenies and ecology. Bioinformatics 26:1463–1464

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  34. Komárek J, Fott B (1983) Chlorophyceae (Grünalgen), Ordung: Chlorococcales. In: Huber Pestallozi G, Heynig H, Mollenhauer D (eds) des Süβwassersflora band (1). Gustav Fischer, Jena, p 1044

    Google Scholar 

  35. Kruk C, Huszar VLM, Peeters ETHM et al (2010) A morphological classification capturing functional variation in phytoplankton. Freshw Biol 55:614–627. https://doi.org/10.1111/j.1365-2427.2009.02298.x

    Article  Google Scholar 

  36. Kruk C, Peeters ETHM, Van Nes EH, Huszar VLM, Costa LS, Scheffer M (2011) Phytoplankton community composition can be predicted best in terms of morphological groups. Limnol Oceanogr 56:110–118

    Article  Google Scholar 

  37. Lange-Bertalot H (1995) Die diatomeen (Bacillariophyceae) em Ehrenberg’s Material von Cayenne, Guyana Gallica, von Erwin Reichardt (1843). Iconographia diatomologica Koenigstein: Koeltz Scientific Books 107p

  38. Latrubesse EM, Arima EY, Dunne T, Park E, Baker VR, d’Horta FM et al (2017) Damming the rivers of the Amazon basin. Nature 546(7658):363–369

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. Legendre P, Legendre L (2012) Numerical ecology. Elsevier, Amsterdam

    Google Scholar 

  40. Lindholm M, Grönroos M, Hjort J et al (2018) Different species trait groups of stream diatoms show divergent responses to spatial and environmental factors in a subarctic drainage basin. Hydrobiologia 816:213–230. https://doi.org/10.1017/CBO9781107415324.004

    Article  Google Scholar 

  41. Lopes VG, Branco CWC, Kozlowsky-Suzuki B, Bini LM (2019) Zooplankton temporal beta diversity along the longitudinal axis of a tropical reservoir. Limnology 20:121–130. https://doi.org/10.1007/s10201-018-0558-y

    Article  Google Scholar 

  42. Lv H, Yang J, Liu L, Yu X, Yu Z, Chiang P (2014) Temperature and nutrients are significant drivers of seasonal shift in phytoplankton community from a drinking water reservoir, subtropical China. Environ Sci Pollut Res 21:5917–5928

    CAS  Article  Google Scholar 

  43. Melack JM, Engle D (2009) An organic carbon budget for an Amazon floodplain lake. Verh Internat Verein Limnol 30:1179–1182

    CAS  Google Scholar 

  44. Melo AS (2013) CommEcol: community ecology analyses. R package version 1.5.8/r24. http://R-Forge.Rproject.org/projects/commecol

  45. Melo AS (2013) CommEcol: community ecology analyses. R package version 1.5.8/r24. Available via http://R-Forge.Rproject.org/projects/commecol

  46. Nilsson C, Reidy CA, Dynesius M, Revenga C (2005) Fragmentation and flow regulation of the world’s large river systems. Science 308(5720):405–408

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  47. Olden JD (2006) Biotic homogenization: a new research agenda for conservation biogeography. J Biogeogr 33:2027–2039

    Article  Google Scholar 

  48. Oliveira AG, Baumgartner MT, Gomes LC, Dias RM, Agostinho AA (2018) Long-term effects of flow regulation by dams simplify fish functional diversity. Freshwater Biol 63:293–305

    CAS  Article  Google Scholar 

  49. Passy S, Blanchet FG (2007) Algal communities in human impacted stream ecosystems suffer beta-diversity decline. Divers Distrib 13:670–679

    Article  Google Scholar 

  50. Pavoine S, Vallet J, Dufour AB, Gachet S, Daniel H (2009) On the challenge of treating various types of variables: application for improving the measurement of functional diversity. Oikos 118:391–402

    Article  Google Scholar 

  51. Pelicice FM, Vitule JRS, Lima Junior DP, Orsi ML, Agostinho AA (2013) A serious new threat to Brazilian freshwater ecosystems: the naturalization of nonnative fish by decree. Conserv Lett 7:55–60

    Article  Google Scholar 

  52. Petsch DK (2016) Causes and consequences of biotic homogenization in freshwater ecosystems. Int Rev Hydrobiol 101:113–122

    Article  Google Scholar 

  53. Prescott GW, Croasdale HT, Viniard WC, Bicudo CEM (1981) A synopsis of north American desmids: Parte II Desmidiaceae: Placodermae. Section 3. Linconl, University Nebraska Press 720p

  54. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. Available via https://www.r-project.org/

  55. Rangel LM, Soares MCS, Paiva R, Silva LHS (2016) Morphology-based functional groups as effective indicators of phytoplankton dynamics in a tropical cyanobacteria-dominated transitional river-reservoir system. Ecol Indic 64:217–227

    Article  Google Scholar 

  56. Reynolds CS (1997) Excellence in ecology: vegetation processes in the pelagic: a model for ecosystem theory. Ecology Institute, Germany

    Google Scholar 

  57. Reynolds CS (2002) Towards a functional classification of the freshwater phytoplankton. J Plankton Res 24:417–428

    Article  Google Scholar 

  58. Reynolds CS (2006) Ecology of phytoplankton. Cambridge University Press, New York

    Google Scholar 

  59. Sanches F, Fish G (2005) Possible microclimate changes due to the formation of the artificial lake of the Tucuruí hydroelectric plant—PA (in Portuguese, as possíveis alterações microclimáticas devido a formação do lago artificial da hidrelétrica de Tucuruí—PA). Acta Amazonica 35(1):41–50

    Article  Google Scholar 

  60. Sant’Anna CL, Azevedo MTDP (2000) Contribution to the knowledge of potentially toxic Cyanobacteria from Brazil. Nova Hedwigia 71:359–386

    Google Scholar 

  61. Simões NR, Braghin LSM, Dure GAV, Santos JS, Sonoda SL, Bonecker CC (2020) Changing taxonomic and functional β-diversity of cladoceran communities in Northeastern and South Brazil. Hydrobiologia 847:3845–3856

    Article  Google Scholar 

  62. Soares MCS, Vidal LO, Roland F, Huszar VLM (2009) Cyanobacterial equilibrium phases in a small tropical impoundment. J Plankton Res 31:1331–1338

    Article  Google Scholar 

  63. Souza DG, Bueno NC, Bortolini JC, Rodrigues LC, Bovo-Scomparin VM, de Souza Franco GM (2016) Phytoplankton functional groups in a subtropical Brazilian reservoir: responses to impoundment. Hydrobiologia 779:47–57

    Article  CAS  Google Scholar 

  64. Stanković I, Vlahović T, Gligora Udovič M, Várbíró G, Borics G (2012) Phytoplankton functional and morpho-functional approach in large floodplain rivers. Hydrobiologia 698:217–231

    Article  CAS  Google Scholar 

  65. Swenson NG, Stegen JC, Davies SJ, Erickson DL, Forero-Montaña J, Hurlbert AH, Kress WJ, Thompson J, Uriarte M, Wright SJ, Zimmerman JK (2012) Temporal turnover in the composition of tropical tree communities: functional determinism and phylogenetic stochasticity. Ecology 93:490–499

    PubMed  Article  PubMed Central  Google Scholar 

  66. Tundisi JG (1990) Spatial distribution temporal sequence and seasonal cycle of phytoplankton in dams: limiting and controlling factors (in Portuguese, Distribuição espacial, seqüência temporal e ciclo sazonal do fitoplâncton em represas: fatores limitantes e controladores). Rev Bras Biol 50(4):937–955

    Google Scholar 

  67. Van-den-Hoek C, Mann DG, Jahns HM (1995) Algae: an introduction to the phycology. Cambridge University Press, Cambridge, p 627

    Google Scholar 

  68. Villéger SS, Grenouillet G, Brosse S (2013) Decomposing functional beta-diversity reveals that low functional betadiversity is driven by low functional turnover in European fish assemblages. Glob Ecol Biogeogr 22:671–681

    Article  Google Scholar 

  69. Violle C, Navas ML, Vile D, Kazakou E, Fortunel C, Hummel I, Garnier E (2007) Let the concept of trait be functional! Oikos 116:882–892

    Article  Google Scholar 

  70. Winemiller KO, Mcintyre PB, Castello L, Fluet-Chouinard E, Giarrizzo T, Nam S et al (2016) Balancing hydropower and biodiversity in the Amazon, Congo, and Mekong. Science 351(6269):128–129

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  71. Wood SA, Prentice MJ, Smith K, Hamilton DP (2010) Low dissolved inorganic nitrogen and increased heterocyte frequency: precursors to Anabaena planktonica blooms in a temperate, eutrophic reservoir. J Plankton Res 32:1315–1325

    CAS  Article  Google Scholar 

  72. World Commission on Dams WCD (2000) Case study of the world dams commission, Tucuruí hydroelectric plant, final report (in Portuguese, Estudo de caso da comissão mundial de barragens, Usina hidreletrica de Tucuruí, relatório Final). In: Secretariat of the World Commission on Dams. Vlaeberg, Cape Town, South Africa. Available via DIALOG.http://www.lima.coppe.ufrj.br/index.php/br/producao-academica/artigos/2002/87--45/file

  73. Wright DH, Patterson BD, Mikkelson GM, Cutler A, Atmar W (1998) A comparative analysis of nested subset patterns of species composition. Oecologia 113:1–20

    Article  Google Scholar 

  74. Xiao LJ, Wang T, Hu R, Han BP, Wang S, Qian X, Padisák J (2011) Succession of phytoplankton functional groups regulated by monsoonal hydrology in a large canyon-shaped reservoir. Water Res 45:5099–5109

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  75. Yang J, Swenson NG, Zhang G, Ci X, Cao M, Sha L, Li J, Ferry Slik JW, Lin L (2015) Local-scale partitioning of functional and phylogenetic beta diversity in a tropical tree assemblage. Sci rep (Nat Publ Group) 5:1–10

    Google Scholar 

  76. Zakrys B, Walne PL (1994) Floristic, taxonomic and phytogeographic studies of green Euglenophyta from the Southeastern United States, with emphasis on new and rare species. Algol Stud 72:71–114

    Google Scholar 

  77. Zhang Y, Peng C, Huang S et al (2019) The relative role of spatial and environmental processes on seasonal variations of phytoplankton beta diversity along different anthropogenic disturbances of subtropical rivers in China. Environ Sci Pollut Res 26:1422–1434. https://doi.org/10.1007/s11356-018-3632-4

    CAS  Article  Google Scholar 

  78. Zheng T, Mao J, Dai H, Liu D (2011) Impacts of water release operations on algal blooms in a tributary bay of the Three Gorges Reservoir (in Portuguese). Sci China Technol Sc 54(6):1588–1598

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brazil (CAPES)—Finance Code 001. L.S. Castro, A. A. Sousa Lopes also thank the CAPES for Internal Scientific Initiation and Extension Scholarship Program (PIBICE) of Federal Institute of Pará-Campus Tucuruí. L.S. Castro, A. A. Sousa Lopes, L. M. Fernandes thank the Eletrobras Eletronorte UHE Tucuruí for technical and logistical support during the performance of this study, material preparation, data collection and also thank to Federal Institute of Pará-Campus Tucuruí. L. Palheta and L. Colares thank the Coordination of Improvement of Higher Education Personnel (CAPES) for the doctoral’s and master’s scholarship, respectively. B. Dunck, L. Palheta and L. Colares also thank the Universidade Federal do Pará and Programa de Pós-Graduação em Ecologia.

Author information

Affiliations

Authors

Contributions

LSC, AAS-L, MSM and LMF contributed to the study conception and design. Quantification of the biological material was performed by LSC and AAS-L. Quantification of the physical–chemical was performed by MSM. The data analysis and the first draft of the manuscript were performed by LSC, LC, LP, and BD. All authors commented on previous versions of the manuscript, read and approved the final manuscript.

Corresponding author

Correspondence to Bárbara Dunck.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Elly SPIJKERMAN.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 465 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Castro, L.S., de Souza Lopes, A.A., Colares, L. et al. Dam promotes downriver functional homogenization of phytoplankton in a transitional river-reservoir system in Amazon. Limnology (2021). https://doi.org/10.1007/s10201-021-00650-6

Download citation

Keywords

  • Functional beta diversity
  • Functional traits
  • Phytoplankton morphological functional groups
  • Microphytoplankton
  • Reservoir