Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Latin hypercube sampling with inequality constraints

Abstract

In some studies requiring predictive and CPU-time consuming numerical models, the sampling design of the model input variables has to be chosen with caution. For this purpose, Latin hypercube sampling has a long history and has shown its robustness capabilities. In this paper we propose and discuss a new algorithm to build a Latin hypercube sample (LHS) taking into account inequality constraints between the sampled variables. This technique, called constrained Latin hypercube sampling (cLHS), consists in doing permutations on an initial LHS to honor the desired monotonic constraints. The relevance of this approach is shown on a real example concerning the numerical welding simulation, where the inequality constraints are caused by the physical decreasing of some material properties in function of the temperature.

This is a preview of subscription content, log in to check access.

References

  1. Asserin, O., Loredo, A., Petelet, M., Iooss, B.: Global sensitivity analysis in welding simulations—What are the material data you really need? Finite Elem. Anal. Des. (2009, submitted). Available at URL: http://hal.archives-ouvertes.fr/hal-00419162/fr/

  2. Borgonovo, E.: Sensitivity analysis of model output with input constraints: A generalized rationale for local methods. Risk Anal. 28, 667–680 (2008)

  3. Bursztyn, D., Steinberg, D.: Comparison of designs for computer experiments. J. Stat. Plan. Inference 136, 1103–1119 (2006)

  4. De Rocquigny, E., Devictor, N., Tarantola, S. (eds.): Uncertainty in Industrial Practice. Wiley, New York (2008)

  5. Fang, K.-T., Li, R., Sudjianto, A.: Design and Modeling for Computer Experiments. Chapman & Hall/CRC, London (2006)

  6. Gentle, J.: Random Number Generation and Monte Carlo Methods. Springer, Berlin (2003)

  7. Helton, J., Davis, F.: Latin hypercube sampling and the propagation of uncertainty in analyses of complex systems. Reliab. Eng. Syst. Saf. 81, 23–69 (2003)

  8. Iman, R., Conover, W.: A distribution-free approach to inducing rank correlation among input variables. Commun. Stat. 11(3), 311–334 (1982)

  9. Iooss, B., Boussouf, L., Feuillard, V., Marrel, A.: Numerical studies of the metamodel fitting and validation processes. Int. J. Adv. Syst. Meas. 3, 11–21 (2010)

  10. Jourdan, A., Franco, J.: Optimal Latin hypercube designs for the Kullback-Leibler criterion. Adv. Stat. Anal. 94(4), 341–351 (2010)

  11. Kleijnen, J.: Design and Analysis of Simulation Experiments. Springer, Berlin (2008)

  12. Kurowicka, D., Cooke, R.: Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley, New York (2006)

  13. Levy, S., Steinberg, D.: Computer experiments: A review. Adv. Stat. Anal. 94(4), 311–324 (2010)

  14. McKay, M., Beckman, R., Conover, W.: A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics 21, 239–245 (1979)

  15. Owen, A.: A central limit theorem for Latin hypercube sampling. J. R. Stat. Soc. B 16, 140–149 (1992)

  16. Park, J.-S.: Optimal Latin-hypercube designs for computer experiments. J. Stat. Plan. Inference 39, 95–111 (1994)

  17. Petelet, M.: Analyse de sensibilité globale de modèles thermomécaniques de simulation numérique du soudage. Thèse de l’Université de Bourgogne (2007)

  18. Petelet, M., Asserin, O., Iooss, B., Loredo, A.: Echantillonnage LHS des propriétés matériau des aciers pour l’analyse de sensibilité globale en simulation numérique du soudage. In: Actes de MATERIAUX, Dijon, France, 2006

  19. Pistone, G., Vicario, G.: Comparing and generating Latin Hypercube designs in Kriging models. Adv. Stat. Anal. 94(4), 353–366 (2010)

  20. Saltelli, A., Chan, K., Scott, E. (eds.): Sensitivity Analysis. Wiley Series in Probability and Statistics. Wiley, New York (2000)

  21. Simpson, T., Lin, D., Chen, W.: Sampling strategies for computer experiments: Design and analysis. Int. J. Reliab. Appl. 2, 209–240 (2001a)

  22. Simpson, T., Peplinski, J., Kock, P., Allen, J.: Metamodel for computer-based engineering designs: Survey and recommendations. Eng. Comput. 17, 129–150 (2001b)

  23. Sobol, I.: Uniformly distributed sequences with additional uniformity property. USSR Comput. Math. Math. Phys. 16, 236–242 (1976)

  24. Stein, M.: Large sample properties of simulations using Latin hypercube sampling. Technometrics 29, 143–151 (1987)

  25. Volkova, E., Iooss, B., Van Dorpe, F.: Global sensitivity analysis for a numerical model of radionuclide migration from the RRC “Kurchatov Institute” radwaste disposal site. Stoch. Environ. Res. Risk Assess. 22, 17–31 (2008)

Download references

Author information

Correspondence to Bertrand Iooss.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Petelet, M., Iooss, B., Asserin, O. et al. Latin hypercube sampling with inequality constraints. AStA Adv Stat Anal 94, 325–339 (2010). https://doi.org/10.1007/s10182-010-0144-z

Download citation

Keywords

  • Computer experiment
  • Latin hypercube sampling
  • Design of experiments
  • Uncertainty analysis
  • Dependence