Abstract
In this work, the effectiveness of a rapid recycling method of waste polypropylene (WPP) with the addition of inorganic fillers was investigated. The experiments were performed using three types of WPP and a mixture of them (MWPP), characterized by different amount of talc content. The influence of sepiolite (micrometric size) and zeolite (nanometric size) fillers addition on newly prepared materials was analysed by X-ray diffraction analysis (XRD) and scanning electron microscopy (FE-SEM). Mechanical characterizations of all the filled compounds were also performed. The data indicate that the addition of low percentage (5%) of sepiolite or LTA zeolite improves some mechanical and rheological properties of WPP-recycled materials. However, the results also show that the simple mixing of wastes and additional fillers (without preparing pellets) has an influence on the recycling process.
This is a preview of subscription content, access via your institution.








References
- 1.
Karian HG (2009) Handbook of polypropylene and polypropylene composites, revised and expanded, 2nd edn. CRC Press, Taylor & Francis, New York, p 2009
- 2.
Sopher SR, Granthen GC (2011) Material and design innovation techniques for expanded polypropylene (EPP) products used in automotive interior applications. SAE Int J Mater Manuf 4:440–448
- 3.
Minoru M, Yuichi M, Yasoi Y (2000) Evaluation of the effect of automotive bumper recycling by life-cycle inventory analysis. J Mater Cycles Waste Manag 2:125–137
- 4.
Zhang H, Chen M (2014) Current recycling regulations and technologies for the typical plastic components of end-of-life passenger vehicles: a meaningful lesson for China. J Mater Cycles Waste Manag 16:187–200
- 5.
Keskisaari A, Karki T (2017) Raw material potential of recyclable materials for fiber composites: a review study. J Mater Cycles Waste Manag 19:1136–1143
- 6.
Makuta M, Moriguchi Y, Yasuda Y, Sueno S (2000) Evaluation of the effect of automotive bumper recycling by life-cycle inventory analysis. J Mater Cycles Waste Manag 2:125–137
- 7.
Bellmann K, Khare A (1999) European response to issues in recycling car plastics. Technovation 19:721–734
- 8.
Bahlouli N, Pessey D, Raveyre C, Guillet J, Ahzi S, Dahoun A, Hiver JM (2012) Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites. Mater Des 33:451–458
- 9.
Da Costa HM, Ramos VD, Rocha MCG (2005) Rheological properties of polypropylene during multiple extrusions. Polym Test 24:86–93
- 10.
Ramirez-Vargas E, Navarro-Rodriguez D, Blanqueto-Menchaca AI, Huerta-Martinez BM, Palacios-Mezta M (2004) Degradation effects on the rheological and mechanical properties of multi-extruded PP-EP/EVA blends. Polym Degrad Stab 86:301
- 11.
Sengupta S, Ray D, Mukhopadhyay A (2013) Sustainable materials: value-added composites from recycled polypropylene and fly ash using a green coupling agent. ACS Sustain Chem Eng 1:574–584
- 12.
Das K, Ray D, Adhikaryn K, Bandyopadhyay R, Mohanty AK, Misra M (2010) Development of recycled polypropylene matrix composites reinforced with fly ash. J Reinf Plast Compos 29:510–517
- 13.
Bocz K, Toldy A, Kmetty Á, Bárány T, Igricz T, Marosi G (2012) Development of flame retarded self-reinforced composites from automotive shredder plastic waste. Polym Degrad Stabil 97:221–227
- 14.
Yu M, Huang R, He C, Wu Q, Zhao X (2016) Hybrid composites from wheat straw, inorganic filler, and recycled polypropylene: morphology and mechanical and thermal expansion performance. Int J Polym Sci 2016:1–12
- 15.
El Hajj N, Seif S, Zgheib N (2016) Recycling of poly(propylene)-based car bumpers as carrier resin for short glass fber composites. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-020-01128-w
- 16.
Bodzay B, Fejos M, Bocz K, Toldy A, Ronkay F, Gy M (2012) Upgrading of recycled polypropylene by preparing flame retarded layered composite. Polym Lett 6:895–902
- 17.
Zare Y, Garmabi H (2012) Nonisothermal crystallization and melting behaviour of PP/nanoclay/CaCO3 ternary nanocomposite. J Appl Polym Sci 124:1225–12233
- 18.
Kordkheili HY, Farsi M, Rezazadeh Z (2013) Physical, mechanical and morphological properties of polymer composites manufactured from carbon nanotubes and wood flour. Compos Part B Eng 44:750–755
- 19.
Wang M, Zeng XF, Chen J-Y, Wang J-X, Zhang L-L, Chen J-F (2017) Magnesium hydroxide nanodispersion for polypropylene nanocomposites with high transparency and excellent fire-retardant properties. Polym Degrad Stabil 146:327–333
- 20.
Kong QG, Qian HY (2014) Low-temperature synthesis of Mg(OH)2 nanoparticles from MgO as halogen-free flame retardant for polypropylene. Fire Mater 38:145–154
- 21.
Deng H, Bilotti E, Zhang R, Peijs T (2010) Effective reinforcement of carbon nanotubes in polypropylene matrices. J Appl Poly Sci 118:30–41
- 22.
Razak JA, Akil HM, Ong H (2007) Effect of inorganic fillers on the flammability behavior of polypropylene composites. J Thermoplast Compos Mat 20:195–205
- 23.
Besco S, Brisotto M, Gianoncelli A, Depero LE, Bontempi E, Lorenzetti A, Modesti M (2003) Processing and properties of polypropylene-based composites containing inertized fly ash from municipal solid waste incineration. J Appl Polym Sci 130:4157–4164
- 24.
Tang JG, Wang Y, Liu YH, Belfiore LA (2004) Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer 45:2081–2091
- 25.
Nath DCD, Bandyopadhyay S, Yu A, Blackburn D, White C, Varughese S (2010) Isothermal crystallization kinetics of fly ash filled iso-polypropylene composite- and a new physical approach. J Therm Anal Calorim 99:423–429
- 26.
Kim HY, Choi JW, Chung Y-C, Chun BC (2015) Recycling and surface modification of waste bottom ash from coal power plants for the preparation of polypropylene and polyethylene composites. J Mater Cycles Waste Manag 17:781–789
- 27.
Zaharri N, Othman N (2019) Optimization of zeolite as filler in polypropylene composite. J Reinf Plast Compos 29:2211–2225
- 28.
Balköse D, Oguz K, Ozyuzer L, Tari S, Arkis E, Omurlu FO (2011) Morphology, order, light transmittance, and water vapor permeability of aluminum coated polypropylene zeolite composite films. J Appl Polym Sci 120:1671–1678
- 29.
Pehlivan H, Balköse D, Ulkü S, Tihminlioğlu F (2005) Characterization of pure and silver exchanged natural zeolite filled polypropylene composite films. Compos Sci Technol 85:2049–2058
- 30.
Wang N, Shao YW, Shi ZX, Zhang J, Li HW (2008) Influence of MCM-41 particle on mechanical and morphological behavior of polypropylene. Mater Sci Eng A 497:363–368
- 31.
Kodal M, Demirhan E (2013) Effect of clinoptilolite filler on the physical and mechanical properties of polypropylene. Polym Compos 34:1396–1403
- 32.
Asgary AR, Nourbakhsh A, Kohantorabi M (2013) Old newsprint/polypropylene nanocomposites using carbon nanotube: preparation and characterization. Compos Part B Eng 45:1414–1419
- 33.
Zahedi M, Khanjanzadeh H, Pirayesh H, Saadatnia MA (2015) Utilization of natural montmorillonite modified with dimethyl, dehydrogenated tallow quaternary ammonium salt as reinforcement in almond shell flourepolypropylene bionanocomposites. Compos Part B Eng 71:143–151
- 34.
Fukushima Y, Inagaki S (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J Inclusion Phenom 5:473–482
- 35.
Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A (1997) Preparation and mechanical properties of polypropylene–clay hybrids. Macromolecules 30:6333–6338
- 36.
Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A (1988) Preparation and mechanical properties of polypropylene–clay hybrids using a maleic anhydride-modified polypropylene oligomer. J Appl Polym Sci 67:87–92
- 37.
Mittal P, Naresh S, Luthra P, Singh A, Dhaliwa J, Kapur GS (2019) Polypropylene composites reinforced with hybrid inorganic fillers: morphological, mechanical, and rheological properties. J Thermoplast Compos Mater 32:848–864
- 38.
Zhao H, Zhang X, Yang F, Chen B, Jin Y, Li G, Feng Z, Huang B (2003) Synthesis and characterization of polypropylene/montmorillonite nanocomposites via an insitu polymerization approach. Chin J Polym Sci 21:413–418
- 39.
Hirayama S, Hayasaki T, Okano R, Fujimori A (2019) Preparation of polymer-based nanocomposites composed of sustainable organo-modified needlelike nanoparticles and their particle dispersion states in the matrix. Eng Sci Polym. https://doi.org/10.1002/pen.25310
- 40.
Ma J, Bilotti E, Peijs T, Darr JA (2007) Preparation of polypropylene/sepiolite nanocomposites using supercritical CO2 assisted mixing. Eur Polym J 43:4931–4939
- 41.
Wang L, Sheng J (2005) Preparation and properties of polypropylene/org-attapulgite nanocomposites. Polymer 46:6243–6249
- 42.
Oksüz M, Eroglu M, Yildirim H (2006) Effect of talc on the properties of polypropylene/ethylene/propylene/diene terpolymer blends. J Appl Polym Sci 101:3033–3039
- 43.
Almeras X, Le Bras M, Hornsby P, Bourbigot S, Marosi G, Keszei S, Poutch F (2003) Effect on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stabil 82:325–331
- 44.
Bilotti E, Fischer HR, Peijs T (2008) Polymer nanocomposites based on needle-like sepiolite clays: effect of functionalized polymers on the dispersion of nanofiller, crystallinity, and mechanical properties. J Appl Polym Sci 107:1116–1123
- 45.
Manchanda B, Kottiyath VK, Kapur GS, Kant S, Choudhary V (2017) Morphological Studies and Thermo-Mechanica behavior of polypropylene/sepiolite nanocomposites. Polym Compos 38:E285–E294
- 46.
Tartaglione G, Tabuani D, Camino G, Moisio M (2008) PP and PBT composites illed with sepiolite: morphology and thermal behavior. Compos Sci Technol 68:451–460
- 47.
de Juan S, Zhang J, Acua P, Nie S, Liu Z, Zhang W, Puertas ML, Esteban-Cubillo A, Santarn J, Wang DJ (2019) An efficient approach to improving fire retardancy and smoke suppression for intumescent flame retardant polypropylene composites via incorporating organo-modified sepiolite. Fire and Materials 43:961.
- 48.
Belviso C, Lettino A, Cavalcante F (2018) Influence of synthesis method on LTA time-dependent stability. Molecules 23:2122
- 49.
Belviso C, Cannas C, Pinna N, Cavalcante F, Lettino A, Lotti P, Gatta GD (2020) Effect of red mud added to zeolite LTA synthesis: where is Fe in the newly-formed material? Microporous Mesoporous Mat 298:110058
- 50.
Delva L, Ragaert K, Degrieck J, Cardon L (2014) The effect of multiple extrusion on the properties of montmorillonite filled polypropylene. Polymers 6:2912
- 51.
Gonzalez JG, Neira-Velazquez G, Angulo Sanchez JL (1998) Polypropylene chain scissions and molecular weight changes in multiple extrusion. Polym Degrad Stab 60:33
- 52.
Ramirez-Vargas E, Navarro-Rodiguez D, Al B-M, Huerta-Martinez BM, Placios-Mezta M (2004) Degradation effects on the rheological and mechanical properties of multi-extruded PP-EP/EVA blends. Polym Degrad Stab 86:301
- 53.
Satapathy S, Kothapalli RVS (2015) Influence of fly ash cenosphere on performance of coir fiber-reinforced recycled high-density polyethylene biocomposites. J Appl Polym Sci 132:42237–42251
- 54.
Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White RH (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers Polym 12:919–926
- 55.
Wang K, Bahlouli N, Addiego F, Ahzi S, Remond Y, Ruch D, Muller R (2013) Effect of talc content on the degradation of re-extruded polypropylene/talc composites. Polym Degrad Stabil 98:1275–1286
- 56.
Aurrekoetxea J, Sarrionandia MA, Urrutibeascoa I, Maspoch ML (2001) Effects of recycling on the microstructure and mechanical properties of isotactic polypropylene. J Mater Sci 36:2607–26013
Author information
Affiliations
Corresponding authors
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary Information
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Belviso, C., Montano, P., Lettino, A. et al. Determining the role of the method used to recycle polypropylene waste materials from automotive industry using sepiolite and zeolite fillers. J Mater Cycles Waste Manag (2021). https://doi.org/10.1007/s10163-021-01184-w
Received:
Accepted:
Published:
Keywords
- Recycled polypropylene
- Sepiolite
- Zeolite
- Filler
- Mechanical and rheological properties