Determining the role of the method used to recycle polypropylene waste materials from automotive industry using sepiolite and zeolite fillers

Abstract

In this work, the effectiveness of a rapid recycling method of waste polypropylene (WPP) with the addition of inorganic fillers was investigated. The experiments were performed using three types of WPP and a mixture of them (MWPP), characterized by different amount of talc content. The influence of sepiolite (micrometric size) and zeolite (nanometric size) fillers addition on newly prepared materials was analysed by X-ray diffraction analysis (XRD) and scanning electron microscopy (FE-SEM). Mechanical characterizations of all the filled compounds were also performed. The data indicate that the addition of low percentage (5%) of sepiolite or LTA zeolite improves some mechanical and rheological properties of WPP-recycled materials. However, the results also show that the simple mixing of wastes and additional fillers (without preparing pellets) has an influence on the recycling process.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. 1.

    Karian HG (2009) Handbook of polypropylene and polypropylene composites, revised and expanded, 2nd edn. CRC Press, Taylor & Francis, New York, p 2009

    Google Scholar 

  2. 2.

    Sopher SR, Granthen GC (2011) Material and design innovation techniques for expanded polypropylene (EPP) products used in automotive interior applications. SAE Int J Mater Manuf 4:440–448

    Article  Google Scholar 

  3. 3.

    Minoru M, Yuichi M, Yasoi Y (2000) Evaluation of the effect of automotive bumper recycling by life-cycle inventory analysis. J Mater Cycles Waste Manag 2:125–137

    Google Scholar 

  4. 4.

    Zhang H, Chen M (2014) Current recycling regulations and technologies for the typical plastic components of end-of-life passenger vehicles: a meaningful lesson for China. J Mater Cycles Waste Manag 16:187–200

    Article  Google Scholar 

  5. 5.

    Keskisaari A, Karki T (2017) Raw material potential of recyclable materials for fiber composites: a review study. J Mater Cycles Waste Manag 19:1136–1143

    Article  Google Scholar 

  6. 6.

    Makuta M, Moriguchi Y, Yasuda Y, Sueno S (2000) Evaluation of the effect of automotive bumper recycling by life-cycle inventory analysis. J Mater Cycles Waste Manag 2:125–137

    Google Scholar 

  7. 7.

    Bellmann K, Khare A (1999) European response to issues in recycling car plastics. Technovation 19:721–734

    Article  Google Scholar 

  8. 8.

    Bahlouli N, Pessey D, Raveyre C, Guillet J, Ahzi S, Dahoun A, Hiver JM (2012) Recycling effects on the rheological and thermomechanical properties of polypropylene-based composites. Mater Des 33:451–458

    Article  Google Scholar 

  9. 9.

    Da Costa HM, Ramos VD, Rocha MCG (2005) Rheological properties of polypropylene during multiple extrusions. Polym Test 24:86–93

    Article  Google Scholar 

  10. 10.

    Ramirez-Vargas E, Navarro-Rodriguez D, Blanqueto-Menchaca AI, Huerta-Martinez BM, Palacios-Mezta M (2004) Degradation effects on the rheological and mechanical properties of multi-extruded PP-EP/EVA blends. Polym Degrad Stab 86:301

    Article  Google Scholar 

  11. 11.

    Sengupta S, Ray D, Mukhopadhyay A (2013) Sustainable materials: value-added composites from recycled polypropylene and fly ash using a green coupling agent. ACS Sustain Chem Eng 1:574–584

    Article  Google Scholar 

  12. 12.

    Das K, Ray D, Adhikaryn K, Bandyopadhyay R, Mohanty AK, Misra M (2010) Development of recycled polypropylene matrix composites reinforced with fly ash. J Reinf Plast Compos 29:510–517

    Article  Google Scholar 

  13. 13.

    Bocz K, Toldy A, Kmetty Á, Bárány T, Igricz T, Marosi G (2012) Development of flame retarded self-reinforced composites from automotive shredder plastic waste. Polym Degrad Stabil 97:221–227

    Article  Google Scholar 

  14. 14.

    Yu M, Huang R, He C, Wu Q, Zhao X (2016) Hybrid composites from wheat straw, inorganic filler, and recycled polypropylene: morphology and mechanical and thermal expansion performance. Int J Polym Sci 2016:1–12

    Article  Google Scholar 

  15. 15.

    El Hajj N, Seif S, Zgheib N (2016) Recycling of poly(propylene)-based car bumpers as carrier resin for short glass fber composites. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-020-01128-w

    Article  Google Scholar 

  16. 16.

    Bodzay B, Fejos M, Bocz K, Toldy A, Ronkay F, Gy M (2012) Upgrading of recycled polypropylene by preparing flame retarded layered composite. Polym Lett 6:895–902

    Article  Google Scholar 

  17. 17.

    Zare Y, Garmabi H (2012) Nonisothermal crystallization and melting behaviour of PP/nanoclay/CaCO3 ternary nanocomposite. J Appl Polym Sci 124:1225–12233

    Article  Google Scholar 

  18. 18.

    Kordkheili HY, Farsi M, Rezazadeh Z (2013) Physical, mechanical and morphological properties of polymer composites manufactured from carbon nanotubes and wood flour. Compos Part B Eng 44:750–755

    Article  Google Scholar 

  19. 19.

    Wang M, Zeng XF, Chen J-Y, Wang J-X, Zhang L-L, Chen J-F (2017) Magnesium hydroxide nanodispersion for polypropylene nanocomposites with high transparency and excellent fire-retardant properties. Polym Degrad Stabil 146:327–333

    Article  Google Scholar 

  20. 20.

    Kong QG, Qian HY (2014) Low-temperature synthesis of Mg(OH)2 nanoparticles from MgO as halogen-free flame retardant for polypropylene. Fire Mater 38:145–154

    Article  Google Scholar 

  21. 21.

    Deng H, Bilotti E, Zhang R, Peijs T (2010) Effective reinforcement of carbon nanotubes in polypropylene matrices. J Appl Poly Sci 118:30–41

    Article  Google Scholar 

  22. 22.

    Razak JA, Akil HM, Ong H (2007) Effect of inorganic fillers on the flammability behavior of polypropylene composites. J Thermoplast Compos Mat 20:195–205

    Article  Google Scholar 

  23. 23.

    Besco S, Brisotto M, Gianoncelli A, Depero LE, Bontempi E, Lorenzetti A, Modesti M (2003) Processing and properties of polypropylene-based composites containing inertized fly ash from municipal solid waste incineration. J Appl Polym Sci 130:4157–4164

    Google Scholar 

  24. 24.

    Tang JG, Wang Y, Liu YH, Belfiore LA (2004) Effects of organic nucleating agents and zinc oxide nanoparticles on isotactic polypropylene crystallization. Polymer 45:2081–2091

    Article  Google Scholar 

  25. 25.

    Nath DCD, Bandyopadhyay S, Yu A, Blackburn D, White C, Varughese S (2010) Isothermal crystallization kinetics of fly ash filled iso-polypropylene composite- and a new physical approach. J Therm Anal Calorim 99:423–429

    Article  Google Scholar 

  26. 26.

    Kim HY, Choi JW, Chung Y-C, Chun BC (2015) Recycling and surface modification of waste bottom ash from coal power plants for the preparation of polypropylene and polyethylene composites. J Mater Cycles Waste Manag 17:781–789

    Article  Google Scholar 

  27. 27.

    Zaharri N, Othman N (2019) Optimization of zeolite as filler in polypropylene composite. J Reinf Plast Compos 29:2211–2225

    Article  Google Scholar 

  28. 28.

    Balköse D, Oguz K, Ozyuzer L, Tari S, Arkis E, Omurlu FO (2011) Morphology, order, light transmittance, and water vapor permeability of aluminum coated polypropylene zeolite composite films. J Appl Polym Sci 120:1671–1678

    Article  Google Scholar 

  29. 29.

    Pehlivan H, Balköse D, Ulkü S, Tihminlioğlu F (2005) Characterization of pure and silver exchanged natural zeolite filled polypropylene composite films. Compos Sci Technol 85:2049–2058

    Article  Google Scholar 

  30. 30.

    Wang N, Shao YW, Shi ZX, Zhang J, Li HW (2008) Influence of MCM-41 particle on mechanical and morphological behavior of polypropylene. Mater Sci Eng A 497:363–368

    Article  Google Scholar 

  31. 31.

    Kodal M, Demirhan E (2013) Effect of clinoptilolite filler on the physical and mechanical properties of polypropylene. Polym Compos 34:1396–1403

    Article  Google Scholar 

  32. 32.

    Asgary AR, Nourbakhsh A, Kohantorabi M (2013) Old newsprint/polypropylene nanocomposites using carbon nanotube: preparation and characterization. Compos Part B Eng 45:1414–1419

    Article  Google Scholar 

  33. 33.

    Zahedi M, Khanjanzadeh H, Pirayesh H, Saadatnia MA (2015) Utilization of natural montmorillonite modified with dimethyl, dehydrogenated tallow quaternary ammonium salt as reinforcement in almond shell flourepolypropylene bionanocomposites. Compos Part B Eng 71:143–151

    Article  Google Scholar 

  34. 34.

    Fukushima Y, Inagaki S (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J Inclusion Phenom 5:473–482

    Article  Google Scholar 

  35. 35.

    Kawasumi M, Hasegawa N, Kato M, Usuki A, Okada A (1997) Preparation and mechanical properties of polypropylene–clay hybrids. Macromolecules 30:6333–6338

    Article  Google Scholar 

  36. 36.

    Hasegawa N, Kawasumi M, Kato M, Usuki A, Okada A (1988) Preparation and mechanical properties of polypropylene–clay hybrids using a maleic anhydride-modified polypropylene oligomer. J Appl Polym Sci 67:87–92

    Article  Google Scholar 

  37. 37.

    Mittal P, Naresh S, Luthra P, Singh A, Dhaliwa J, Kapur GS (2019) Polypropylene composites reinforced with hybrid inorganic fillers: morphological, mechanical, and rheological properties. J Thermoplast Compos Mater 32:848–864

    Article  Google Scholar 

  38. 38.

    Zhao H, Zhang X, Yang F, Chen B, Jin Y, Li G, Feng Z, Huang B (2003) Synthesis and characterization of polypropylene/montmorillonite nanocomposites via an insitu polymerization approach. Chin J Polym Sci 21:413–418

    Google Scholar 

  39. 39.

    Hirayama S, Hayasaki T, Okano R, Fujimori A (2019) Preparation of polymer-based nanocomposites composed of sustainable organo-modified needlelike nanoparticles and their particle dispersion states in the matrix. Eng Sci Polym. https://doi.org/10.1002/pen.25310

    Article  Google Scholar 

  40. 40.

    Ma J, Bilotti E, Peijs T, Darr JA (2007) Preparation of polypropylene/sepiolite nanocomposites using supercritical CO2 assisted mixing. Eur Polym J 43:4931–4939

    Article  Google Scholar 

  41. 41.

    Wang L, Sheng J (2005) Preparation and properties of polypropylene/org-attapulgite nanocomposites. Polymer 46:6243–6249

    Article  Google Scholar 

  42. 42.

    Oksüz M, Eroglu M, Yildirim H (2006) Effect of talc on the properties of polypropylene/ethylene/propylene/diene terpolymer blends. J Appl Polym Sci 101:3033–3039

    Article  Google Scholar 

  43. 43.

    Almeras X, Le Bras M, Hornsby P, Bourbigot S, Marosi G, Keszei S, Poutch F (2003) Effect on the fire retardancy of intumescent polypropylene compounds. Polym Degrad Stabil 82:325–331

    Article  Google Scholar 

  44. 44.

    Bilotti E, Fischer HR, Peijs T (2008) Polymer nanocomposites based on needle-like sepiolite clays: effect of functionalized polymers on the dispersion of nanofiller, crystallinity, and mechanical properties. J Appl Polym Sci 107:1116–1123

    Article  Google Scholar 

  45. 45.

    Manchanda B, Kottiyath VK, Kapur GS, Kant S, Choudhary V (2017) Morphological Studies and Thermo-Mechanica behavior of polypropylene/sepiolite nanocomposites. Polym Compos 38:E285–E294

    Article  Google Scholar 

  46. 46.

    Tartaglione G, Tabuani D, Camino G, Moisio M (2008) PP and PBT composites illed with sepiolite: morphology and thermal behavior. Compos Sci Technol 68:451–460

  47. 47.

    de Juan S, Zhang J, Acua P, Nie S, Liu Z, Zhang W, Puertas ML, Esteban-Cubillo A, Santarn J, Wang DJ (2019) An efficient approach to improving fire retardancy and smoke suppression for intumescent flame retardant polypropylene composites via incorporating organo-modified sepiolite. Fire and Materials 43:961.

  48. 48.

    Belviso C, Lettino A, Cavalcante F (2018) Influence of synthesis method on LTA time-dependent stability. Molecules 23:2122

    Article  Google Scholar 

  49. 49.

    Belviso C, Cannas C, Pinna N, Cavalcante F, Lettino A, Lotti P, Gatta GD (2020) Effect of red mud added to zeolite LTA synthesis: where is Fe in the newly-formed material? Microporous Mesoporous Mat 298:110058

    Article  Google Scholar 

  50. 50.

    Delva L, Ragaert K, Degrieck J, Cardon L (2014) The effect of multiple extrusion on the properties of montmorillonite filled polypropylene. Polymers 6:2912

    Article  Google Scholar 

  51. 51.

    Gonzalez JG, Neira-Velazquez G, Angulo Sanchez JL (1998) Polypropylene chain scissions and molecular weight changes in multiple extrusion. Polym Degrad Stab 60:33

    Article  Google Scholar 

  52. 52.

    Ramirez-Vargas E, Navarro-Rodiguez D, Al B-M, Huerta-Martinez BM, Placios-Mezta M (2004) Degradation effects on the rheological and mechanical properties of multi-extruded PP-EP/EVA blends. Polym Degrad Stab 86:301

    Article  Google Scholar 

  53. 53.

    Satapathy S, Kothapalli RVS (2015) Influence of fly ash cenosphere on performance of coir fiber-reinforced recycled high-density polyethylene biocomposites. J Appl Polym Sci 132:42237–42251

    Google Scholar 

  54. 54.

    Ayrilmis N, Jarusombuti S, Fueangvivat V, Bauchongkol P, White RH (2011) Coir fiber reinforced polypropylene composite panel for automotive interior applications. Fibers Polym 12:919–926

    Article  Google Scholar 

  55. 55.

    Wang K, Bahlouli N, Addiego F, Ahzi S, Remond Y, Ruch D, Muller R (2013) Effect of talc content on the degradation of re-extruded polypropylene/talc composites. Polym Degrad Stabil 98:1275–1286

    Article  Google Scholar 

  56. 56.

    Aurrekoetxea J, Sarrionandia MA, Urrutibeascoa I, Maspoch ML (2001) Effects of recycling on the microstructure and mechanical properties of isotactic polypropylene. J Mater Sci 36:2607–26013

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Claudia Belviso or Ambra Guarnaccio.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 3260 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Belviso, C., Montano, P., Lettino, A. et al. Determining the role of the method used to recycle polypropylene waste materials from automotive industry using sepiolite and zeolite fillers. J Mater Cycles Waste Manag (2021). https://doi.org/10.1007/s10163-021-01184-w

Download citation

Keywords

  • Recycled polypropylene
  • Sepiolite
  • Zeolite
  • Filler
  • Mechanical and rheological properties