Low-toxic zeolite fabricated from municipal solid waste incineration fly ash via microwave-assisted hydrothermal process with fusion pretreatment

Abstract

Fusion pretreatment is introduced to the microwave-assisted hydrothermal process to improve the zeolite fabrication from municipal solid waste incineration (MSWI) fly ash. The fusion-pretreated microwave-assisted hydrothermal method (FMHM) and microwave-assisted hydrothermal method are conducted and systematically compared. With fusion pretreatment, the quartz is transformed into amorphous form, which is easier to dissolve into a hydrothermal solution and thus accelerates the zeolite fabrication process. The scanning electron microscope, X-ray diffraction, Fourier transform infrared measurement and thermal gravimetric analysis are performed, whose results suggest the formation of zeolite materials in the FMHM product, such as needle-like tobermorite and rose-like sodalite. The thermal gravimetric analysis indicates water adsorption of the FMHM product is improved. The cation exchange capacity of the FMHM product is 1.172 meq g−1, more than twofold larger than that of the MHM product. Additionally, the toxicity test indicates that the leakage of heavy metal ions from the FMHM product is dramatically reduced. The improved safety makes the zeolitic product synthesized from MSWI fly ash promising for further applications. FMHM significantly facilitates the disposal and reuse of the MSWI fly ash.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. 1.

    Hu Y, Zhang P, Li J, Chen D (2015) Stabilization and separation of heavy metals in incineration fly ash during the hydrothermal treatment process. J Hazard Mater 299:149–157. https://doi.org/10.1016/j.jhazmat.2015.06.002

    Article  Google Scholar 

  2. 2.

    Xue Y, Hou H, Zhu S, Zha J (2009) Utilization of municipal solid waste incineration ash in stone mastic asphalt mixture: pavement performance and environmental impact. Constr Build Mater 23:989–996. https://doi.org/10.1016/j.conbuildmat.2008.05.009

    Article  Google Scholar 

  3. 3.

    Pan Y, Yang L, Zhou J, Liu J, Qian G, Ohtsuka N et al (2013) Characteristics of dioxins content in fly ash from municipal solid waste incinerators in China. Chemosphere 92:765–771. https://doi.org/10.1016/j.chemosphere.2013.04.003

    Article  Google Scholar 

  4. 4.

    Anastasiadou K, Christopoulos K, Mousios E, Gidarakos E (2012) Solidification/stabilization of fly and bottom ash from medical waste incineration facility. J Hazard Mater 207:165–170. https://doi.org/10.1016/j.jhazmat.2011.05.027

    Article  Google Scholar 

  5. 5.

    China's National Bureau of Statistics (2019) China statistical yearbook. China Statistics Press, Beijing

    Google Scholar 

  6. 6.

    Cyr M, Idir R, Escadeillas G (2012) Use of metakaolin to stabilize sewage sludge ash and municipal solid waste incineration fly ash in cement-based materials. J Hazard Mater 243:193–203. https://doi.org/10.1016/j.jhazmat.2012.10.019

    Article  Google Scholar 

  7. 7.

    Tang Q, Liu Y, Gu F, Zhou T (2016) Solidification/stabilization of fly ash from a municipal solid waste incineration facility using portland cement. Adv Mater Sci Eng 2016:1–10. https://doi.org/10.1155/2016/7101243

    Article  Google Scholar 

  8. 8.

    Li X-G, Lv Y, Ma B-G, Chen Q-B, Yin X-B, Jian S-W (2012) Utilization of municipal solid waste incineration bottom ash in blended cement. J Clean Prod 32:96–100. https://doi.org/10.1016/j.jclepro.2012.03.038

    Article  Google Scholar 

  9. 9.

    Lin KL, Wang KS, Tzeng BY, Lin CY (2003) The reuse of municipal solid waste incinerator fly ash slag as a cement substitute. Resour Conserv Recyl 39:315–324. https://doi.org/10.1016/S0921-3449(02)00172-6

    Article  Google Scholar 

  10. 10.

    Mangialardi T, Paolini AE, Polettini A, Sirini P (1999) Optimization of the solidification/stabilization process of MSW fly ash in cementitious matrices. J Hazard Mater 70:53–70. https://doi.org/10.1016/S0304-3894(99)00132-6

    Article  Google Scholar 

  11. 11.

    Wang F-H, Zhang F, Chen Y-J, Gao J, Zhao B (2015) A comparative study on the heavy metal solidification/stabilization performance of four chemical solidifying agents in municipal solid waste incineration fly ash. J Hazard Mater 300:451–458. https://doi.org/10.1016/j.jhazmat.2015.07.037

    Article  Google Scholar 

  12. 12.

    Liu S-J, Guo Y-P, Yang H-Y, Wang S, Ding H, Qi Y (2016) Synthesis of a water-soluble thiourea-formaldehyde (WTF) resin and its application to immobilize the heavy metal in MSWI fly ash. J Environ Manag 182:328–334. https://doi.org/10.1016/j.jenvman.2016.07.086

    Article  Google Scholar 

  13. 13.

    Mallampati SR, Mitoma Y, Simion C, Lee BH (2015) Immobilization and volume reduction of heavy metals in municipal solid waste fly ash using nano-size calcium and iron-dispersed reagent. J Air Waste Manag 65:1247–1255. https://doi.org/10.1080/10962247.2015.1077175

    Article  Google Scholar 

  14. 14.

    Weckhuysen BM, Yu J (2015) Recent advances in zeolite chemistry and catalysis. Chem Soc Rev 44:7022–7024. https://doi.org/10.1039/c5cs90100f

    Article  Google Scholar 

  15. 15.

    Abdullahi T, Harun Z, Othman MHD (2017) A review on sustainable synthesis of zeolite from kaolinite resources via hydrothermal process. Adv Powder Technol 28:1827–1840. https://doi.org/10.1016/j.apt.2017.04.028

    Article  Google Scholar 

  16. 16.

    Yang T, Han C, Liu H, Yang L, Liu D, Tang J et al (2019) Synthesis of Na-X zeolite from low aluminum coal fly ash: characterization and high efficient As(V) removal. Adv Powder Technol 30:199–206. https://doi.org/10.1016/j.apt.2018.10.023

    Article  Google Scholar 

  17. 17.

    Bayuseno AP, Schmahl WW, Muellejans T (2009) Hydrothermal processing of MSWI fly ash-towards new stable minerals and fixation of heavy metals. J Hazard Mater 167:250–259. https://doi.org/10.1016/j.jhazmat.2008.12.119

    Article  Google Scholar 

  18. 18.

    Qiu Q, Jiang X, Lu S, Ni M (2016) Effects of microwave-assisted hydrothermal treatment on the major heavy metals of municipal solid waste incineration fly ash in a circulating fluidized bed. Energy Fuel 30:5945–5952. https://doi.org/10.1021/acs.energyfuels.6b00547

    Article  Google Scholar 

  19. 19.

    Qiu Q, Jiang X, Lv G, Lu S, Ni M (2016) Stabilization of heavy metals in municipal solid waste incineration fly ash in circulating fluidized bed by microwave-assisted hydrothermal treatment with additives. Energy Fuel 30:7588–7595. https://doi.org/10.1021/acs.energyfuels.6b01431

    Article  Google Scholar 

  20. 20.

    Qiu Q, Jiang X, Chen Z, Lu S, Ni M (2017) Microwave-assisted hydrothermal treatment with soluble phosphate added for heavy metals solidification in MSWI fly ash. Energy Fuel 31:5222–5232. https://doi.org/10.1021/acs.energyfuels.6b02516

    Article  Google Scholar 

  21. 21.

    Qiu Q, Jiang X, Lv G, Chen Z, Lu S, Ni M et al (2018) Adsorption of heavy metal ions using zeolite materials of municipal solid waste incineration fly ash modified by microwave-assisted hydrothermal treatment. Powder Technol 335:156–163. https://doi.org/10.1016/j.powtec.2018.05.003

    Article  Google Scholar 

  22. 22.

    Ojha K, Pradhan NC, Samanta AN (2004) Zeolite from fly ash: synthesis and characterization. Bull Mater Sci 27:555–564. https://doi.org/10.1007/BF02707285

    Article  Google Scholar 

  23. 23.

    USA EPA (1986) Cation-exchange capacity of soils (Sodium acetate). Washington DC

  24. 24.

    Ministry of Ecology and Environment of the People's Republic of China (2007) Solid waste-extraction procedure for leaching toxicity-acetic acid buffer solution method, HJ/T300-2007. China Environmental Standards Press, Beijing

    Google Scholar 

  25. 25.

    Guo X, Song M (2018) Micro-nanostructures of tobermorite hydrothermal-synthesized from fly ash and municipal solid waste incineration fly ash. Constr Build Mater 191:431–439. https://doi.org/10.1016/j.conbuildmat.2018.10.030

    Article  Google Scholar 

  26. 26.

    Belviso C (2018) Ultrasonic vs hydrothermal method: different approaches to convert fly ash into zeolite. How they affect the stability of synthetic products over time? Ultrason Sonochem 43:9–14. https://doi.org/10.1816/j.ultsonch.2017.12.050

    Article  Google Scholar 

  27. 27.

    Kazemian H, Naghdali Z, Kashani TG, Farhadi F (2010) Conversion of high silicon fly ash to Na-P1 zeolite: alkaline fusion followed by hydrothermal crystallization. Adv Powder Technol 21:279–283. https://doi.org/10.1016/j.apt.2009.12.005

    Article  Google Scholar 

  28. 28.

    Hu H, Luo G, Liu H, Qiao Y, Xu M, Yao H (2013) Fate of chromium during thermal treatment of municipal solid waste incineration (MSWI) fly ash. Proc Combust Inst 34:2795–2801. https://doi.org/10.1016/j.proci.2012.06.181

    Article  Google Scholar 

  29. 29.

    Wang KS, Sun CJ, Liu CY (2001) Effects of the type of sintering atmosphere on the chromium leachability of thermal-treated municipal solid waste incinerator fly ash. Waste Manag 21:85–91. https://doi.org/10.1016/S0956-053X(00)00041-6

    Article  Google Scholar 

  30. 30.

    Perry RH, Green DW (2007) Perry's chemical engineers' handbook. McGraw-Hill, New York

    Google Scholar 

  31. 31.

    Yang L, Qian X, Yuan P, Bai H, Miki T, Men F et al (2019) Green synthesis of zeolite 4A using fly ash fused with synergism of NaOH and Na2CO3. J Clean Prod 212:250–260. https://doi.org/10.1016/j.jclepro.2018.11.259

    Article  Google Scholar 

  32. 32.

    Ślósarczyk A, Paszkiewicz Z, Paluszkiewicz C (2005) FTIR and XRD evaluation of carbonated hydroxyapatite powders synthesized by wet methods. J Mol Struct 744–747:657–661. https://doi.org/10.1016/j.molstruc.2004.11.078

    Article  Google Scholar 

  33. 33.

    Sivalingam S, Sen S (2019) Valorization of coal fly ash into nanozeolite by sonication-assisted hydrothermal method. J Environ Manag 235:145–151. https://doi.org/10.1016/j.jenvman.2019.01.042

    Article  Google Scholar 

  34. 34.

    Liu Y, Yan C, Zhao J, Zhang Z, Wang H, Zhou S et al (2018) Synthesis of zeolite P1 from fly ash under solvent-free conditions for ammonium removal from water. J Clean Prod 202:11–22. https://doi.org/10.1016/j.jclepro.2018.08.128

    Article  Google Scholar 

  35. 35.

    Li Q, Xu H, Li F, Li P, Shen L, Zhai J (2012) Synthesis of geopolymer composites from blends of CFBC fly and bottom ashes. Fuel 97:366–372. https://doi.org/10.1016/j.fuel.2012.02.059

    Article  Google Scholar 

  36. 36.

    Dizge N, Aydiner C, Demirbas E, Kobya M, Kara S (2008) Adsorption of reactive dyes from aqueous solutions by fly ash: kinetic and equilibrium studies. J Hazard Mater 150:737–746. https://doi.org/10.1016/j.jhazmat.2007.05.027

    Article  Google Scholar 

  37. 37.

    Henao-Sierra W, Romero-Sáez M, Gracia F, Cacua K, Buitrago-Sierra R (2018) Water vapor adsorption performance of Ag and Ni modified 5A zeolite. Microporous Mesoporous Mater 265:250–257. https://doi.org/10.1016/j.micromeso.2018.02.036

    Article  Google Scholar 

  38. 38.

    Li DX, Chen YM, Shen JL, Su JH, Wu XQ (2000) The influence of alkalinity on activation and microstructure of fly ash. Cement Concr Res 30:881–886. https://doi.org/10.1016/S0008-8846(00)00252-0

    Article  Google Scholar 

  39. 39.

    Kim MS, Jun Y, Lee C, Oh JE (2013) Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cement Concr Res 54:208–214. https://doi.org/10.1016/j.cemconres.2013.09.011

    Article  Google Scholar 

  40. 40.

    Sato H, Grutzeck M (1991) Effect of starting materials on the synthesis of tobermorite. Mater Res Soc Symp Proc 245:235. https://doi.org/10.1557/PROC-245-235

    Article  Google Scholar 

  41. 41.

    Huang S, Chang F, Lo S, Lee M, Wang C, Lin J (2007) Production of lightweight aggregates from mining residues, heavy metal sludge, and incinerator fly ash. J Hazard Mater 144:52–58. https://doi.org/10.1016/j.jhazmat.2006.09.094

    Article  Google Scholar 

  42. 42.

    Alver E, Metin AU (2012) Anionic dye removal from aqueous solutions using modified zeolite: adsorption kinetics and isotherm studies. Chem Eng J 200:59–67. https://doi.org/10.1016/j.cej.2012.06.038

    Article  Google Scholar 

  43. 43.

    Querol X, Moreno N, Umana JC, Juan R, Hernandez S, Fernandez-Pereira C et al (2002) Application of zeolitic material synthesised from fly ash to the decontamination of waste water and flue gas. J Chem Technol Biot 77:292–298. https://doi.org/10.1002/jctb.597

    Article  Google Scholar 

  44. 44.

    Querol X, Moreno N, Umana JC, Alastuey A, Hernandez E, Lopez-Soler A et al (2002) Synthesis of zeolites from coal fly ash: an overview. Int J Coal Geol 50:413–423. https://doi.org/10.1016/S0166-5162(02)00124-6

    Article  Google Scholar 

  45. 45.

    Zhao Y (2016) Review of the natural, modified, and synthetic zeolites for heavy metals removal from wastewater. Environ Eng Sci 33:443–454. https://doi.org/10.1089/ees.2015.0166

    Article  Google Scholar 

  46. 46.

    Baldermann A, Landler A, Mittermayr F, Letofsky-Papst I, Steindl F, Galan I (2019) Removal of heavy metals (Co, Cr, and Zn) during calcium-aluminium-silicate-hydrate and trioctahedral smectite formation. J Mater Sci 54:9331–9351. https://doi.org/10.1007/s10853-019-03541-5

    Article  Google Scholar 

  47. 47.

    Tran HV, Gowripalan N (2018) Mechanisms of heavy metal immobilisation using geopolymerisation techniques—a review. J Adv Concr Technol 16:124–135. https://doi.org/10.3151/jact.16.124

    Article  Google Scholar 

  48. 48.

    Gattullo CE, D'Alessandro C, Allegretta I, Porfido C, Spagnuolo M, Terzano R (2018) Alkaline hydrothermal stabilization of Cr(VI) in soil using glass and aluminum from recycled municipal solid wastes. J Hazard Mater 344:381–389. https://doi.org/10.1016/j.jhazmat.2017.10.035

    Article  Google Scholar 

  49. 49.

    Zhou X, Zhou M, Wu X, Han Y, Geng J, Wang T et al (2017) Reductive solidification/stabilization of chromate in municipal solid waste incineration fly ash by ascorbic acid and blast furnace slag. Chemosphere 182:76–84. https://doi.org/10.1016/j.chemosphere.2017.04.072

    Article  Google Scholar 

  50. 50.

    Lindberg D, Molin C, Hupa M (2015) Thermal treatment of solid residues from WtE units: a review. Waste Manag 37:82–94. https://doi.org/10.1016/j.wasman.2014.12.009

    Article  Google Scholar 

Download references

Acknowledgements

This study is supported by the National Key Research and Development Program of China (Grant Nos. 2018YFF0215001, 2018YFC1901302, 2017YFC0703100), the Innovative Research Groups of the National Natural Science Foundation of China (Grant No. 51621005), the National Nature Science Foundation of China (Grant No. 51676172), and the Fundamental Research Funds for the Central Universities (Grant No. 2018FZA4010), Funds for Science and Technology projects of Power Construction Group Corporation of China, LTD.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Xuguang Jiang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 4757 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chen, Q., Long, L., Liu, X. et al. Low-toxic zeolite fabricated from municipal solid waste incineration fly ash via microwave-assisted hydrothermal process with fusion pretreatment. J Mater Cycles Waste Manag 22, 1196–1207 (2020). https://doi.org/10.1007/s10163-020-01020-7

Download citation

Keywords

  • Zeolite fabrication
  • MSWI fly ash
  • Fusion pretreatment
  • Microwave-assisted hydrothermal
  • Toxicity