Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals

  • Fábio Friol Guedes de Paiva
  • Vitor Peixoto Klienchen de Maria
  • Giovani Barrera Torres
  • Guilherme Dognani
  • Renivaldo José dos Santos
  • Flávio Camargo Cabrera
  • Aldo Eloizo JobEmail author


In many countries, agricultural wastes cause significant air pollution due owing the burning of large amounts of residue. Biocomposites represent a new generation of materials that are eco-friendly, CO2-neutral, economical, low-density and non-petroleum derivatives. They have been widely used to facilitate the reuse of waste and protect the environment. Here, we introduce the reuse of sugarcane bagasse fiber, untreated (SCBU) and alkaline treated (SCBT) by incorporation as reinforcement filler in natural rubber composites used in the manufacture of sandals. Composites were prepared using untreated residue and compared with those treated with 10% sodium hydroxide. The alkali treatment allowed to incorporate high amounts of residue without loss of mechanical properties. The alkali treatment decreased 20% of hardness, increased 98% of tensile strength, maintained the flexibility of the rubber composites, increasing elongation at break to 546% (treated) from 303% (untreated), comparing 40 phr of residue. The composite was used in the preparation of sandals adhering to requirements specified in Testing and Research Institute for the Manufacture of Footwear and paves the way for technological innovation in footwear.


Biomaterials Vulcanization Natural rubber Sugarcane bagasse Composites 


  1. 1.
    Silva DC, Melo CA, Junior FHS, Moreira AB, Ferreira OP, Bisinoti MC (2017) Effect of the reaction medium on the immobilization of nutrients in hydrochars obtained using sugarcane industry residues. Biores Technol 237:213–221CrossRefGoogle Scholar
  2. 2.
    Bizzo WA, Scarf PC, Carvalho DJ, Veiga JPS (2014) The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. Renew Sustain Energy Rev 29:589–603CrossRefGoogle Scholar
  3. 3.
    Alavi N, Daneshpajou M, Shirmardi M, Goudarzi G, Neisi A, Babaei AA (2017) Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite. Waste Manag 69:117–126CrossRefGoogle Scholar
  4. 4.
    Tuyên DV, Phuong HN, Cone JW, Baars JJP, Sonnenberg ASM, Hendriks WH (2013) Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresour Technol 129:256–263CrossRefGoogle Scholar
  5. 5.
    Piedrahita JCA, Garcia RH, Rangel JMM, Calvo HL, Tamez PLV, Reyes JM (2016) Mechanical properties and durability of mortars prepared with untreated sugarcane bagasse ash and fly ash. Construct Build Mater 105:69–81CrossRefGoogle Scholar
  6. 6.
    Moubarik A, Grimi N, Boussetta N (2013) Structural and thermal characterization of Moroccan sugar cane bagasse and their applications cellulose fibers as a reinforcing agent in low density polyethylene. Compos Part B Eng 52:233–238CrossRefGoogle Scholar
  7. 7.
    Huang L, Wang P (2017) Effects of preparation conditions on properties of rigid polyurethane foam composites based on liquefied bagasse and jute fiber. Polym Test 60:266–273CrossRefGoogle Scholar
  8. 8.
    Cao Y. Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable bagasse fiber composites reinforced with alkali before and after treatments. Compos Part A Appl Sci Manuf 37:423–429CrossRefGoogle Scholar
  9. 9.
    Light SM, Costa SM, Goncalves AR, Junior ODA, Costa SA (2016) Polypropylene composites reinforced with biodegraded sugarcane bagasse fibers: static and dynamic mechanical properties. Mater Res 19:75–83CrossRefGoogle Scholar
  10. 10.
    Sukudom N, Jariyasakoolroj P, Jarupan L (2018) Mechanical, thermal, and biodegradable behaviors of poly(vinyl alcohol) biocomposite with reinforcement of oil palm frond fiber. J Mater Cycles Waste Manag. Google Scholar
  11. 11.
    Shivamurthy B, Murthy K, Joseph PC, Rishi K, Bhat KU, Anandhan S (2015) Mechanical properties and sliding wear behavior of jatropha seed cake waste/epoxy composites. J Mater Cycles Waste Manage 17(1):144–156CrossRefGoogle Scholar
  12. 12.
    Barczewski M, Matykiewicz D, Krygier A, Andrzejewski J, Skórczewska K (2018) Characterization of poly (lactic acid) biocomposites filled with chestnut shell waste. J Mater Cycles Waste Manage 20(2):914–924CrossRefGoogle Scholar
  13. 13.
    Pittayavinai P, Thanawan S, Amornsakchai T (2016) Manipulation of mechanical properties of short pineapple leaf fiber reinforced natural rubber composites through variations in cross-link density and carbon black loading. Polym Test 54:84–89CrossRefGoogle Scholar
  14. 14.
    Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64:955–965CrossRefGoogle Scholar
  15. 15.
    Pantamanatsopa P, Ariyawiriyanan W, Meekeaw T, Suthamyong R, Arrub K, Hamada H (2014) Effect of modified jute fiber on mechanical properties of green rubber composite. Proc Energy 56:641–647CrossRefGoogle Scholar
  16. 16.
    Ismail H, Edyham MR, Wirjosentono B (2002) Natural bamboo fiber filled composite rubber: the effects of filler loading and bonding agent. Polym Test 21:139–144CrossRefGoogle Scholar
  17. 17.
    Geethamma VG, Kalaprasad G, Groeninckx G, Thomas S (2005) Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos Part A Appl Sci Manuf 36:1499–1506CrossRefGoogle Scholar
  18. 18.
    Santos RJ, Agostini DLS, Cabrera FC, Reis EAP, Ruiz MR, Budemberg ER, Teixeira SR, Job AE (2014) Sugarcane bagasse ash: new filler to natural rubber composite. Polymers 24:646–653Google Scholar
  19. 19.
    Garcia NG, Reis EAP, Budemberg ER, Agostini DLS, Salmazo LO, Cabrera FC, Job AEJ (2015) Natural rubber/leather waste composite foam: a new eco-friendly material and recycling approach. J Appl Polym Sci 132(11):41636Google Scholar
  20. 20.
    Formela K, Hejna A, Piszczyk Ł, Saeb MR, Colom X (2016) Processing and structure–property relationships of natural rubber/wheat bran biocomposites. Cellulose 23(5):3157–3175CrossRefGoogle Scholar
  21. 21.
    Pongdong W, Kummerlöwe C, Vennemann N, Thitithammawong A, Nakason C (2016) Property correlations for dynamically cured rice husk ash filled epoxidized natural rubber/thermoplastic polyurethane blends: Influences of RHA loading. Polym Test 53:245–256CrossRefGoogle Scholar
  22. 22.
    Neto WPF, Mariano M, da Silva ISV, Silvério HA, Putaux JL, Otaguro H, Dufresne A (2016) Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym 153:143–152CrossRefGoogle Scholar
  23. 23.
    Westerlind BS, Berg JCJ (1988) Surface energy of untreated and surface-modified cellulose fibers. J Appl Polym Sci 36:523–534CrossRefGoogle Scholar
  24. 24.
    Motaung TE, Anandjiwala RD (2015) Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Ind Crops Prod 74:472–477CrossRefGoogle Scholar
  25. 25.
    Hossain MK, Karim MR, Chowdhury MR, Imam MA, Hosur M, Jeelani S, Farag R (2014) Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Ind Crops Prod 58:78–90CrossRefGoogle Scholar
  26. 26.
    Brahmakumar M, Pavithran C, Pillai RM (2005) Coconut fiber reinforced polyethylene composites: effect of natural waxy surface layer of the fiber on fiber/matrix interfacial bonding and strength of composites. Compos Sci Technol 65:563–569CrossRefGoogle Scholar
  27. 27.
    Abdelmouleh M, Boufi S, Belgace MN, Dufresme A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639CrossRefGoogle Scholar
  28. 28.
    Sanchez E, Cavani CS, Leão CV, Sanchez CG (2010) Unsaturated polyester resin composite with sugar cane bagasse: influence of treatment on the fibers properties. Polímeros 20:194–200CrossRefGoogle Scholar
  29. 29.
    American Society for Testing and Materials (ASTM). ASTM D 2084-01 standard test method for rubber property-vulcanization using oscillating disk cure meter, USA. Accessed 15 Oct 2016
  30. 30.
    American Society for Testing Materials (ASTM) (2010) D 5963 test method for rubber property—abrasion resistance (rotary drum abrader)Google Scholar
  31. 31.
    American Society for Testing Materials (ASTM) (2010) D 2240. Test method for rubber property—durometer hardnessGoogle Scholar
  32. 32.
    Vieyres A, Aparicio RP, Albouy PA, Sanseau O, Saalwächter K, Long DR, Sotta P (2013) Sulfur-cured natural rubber elastomer networks: correlating cross-link density, chain orientation, and mechanical response by combined techniques. Macromolecules 46:889–899CrossRefGoogle Scholar
  33. 33.
    Flory PJ, Rehner JJ Jr (1943) Statistical mechanics of cross-linked polymer networks II. swelling. J Chem Phys 11:521–526CrossRefGoogle Scholar
  34. 34.
    Teixeira SR, Souza AE, Santos GTA, Peña AFVJ (2008) Sugarcane bagasse ash as a potential replacement quartz in red ceramic. J Am Ceram Soc 91:1883–1887CrossRefGoogle Scholar
  35. 35.
    Teixeira SR, Pena AFV, Miguel AG (2010) Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel. Waste Manag 30(5):804–807CrossRefGoogle Scholar
  36. 36.
    Li X, Tabil LG, Panigrahi SJ (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33CrossRefGoogle Scholar
  37. 37.
    Kabir MM, Wang H, Lau KT, Cardona F (2013) Tensile properties of chemically treated hemp fibres as reinforcement for composites. Compos Part B Eng 53:362–368CrossRefGoogle Scholar
  38. 38.
    Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37(23):5139–5149CrossRefGoogle Scholar
  39. 39.
    Iacovita C, Stiufiuc R, Radu T, Florea A, Dutu A, Mican S, Tetean R, Lucaciu CM (2015) Polyethylene glycol-mediated synthesis of cubic iron oxide nanoparticles with high heating power. Nanosc Res Lett 10(1):391CrossRefGoogle Scholar
  40. 40.
    Mothé CG, Miranda IC (2009) Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim 97(2):661–665CrossRefGoogle Scholar
  41. 41.
    Mahmoodi NM, Khorramfar S, Najafi F (2011) Amine-functionalized silica nanoparticle: preparation, characterization and anionic dye removal ability. Desalination 279:61–68CrossRefGoogle Scholar
  42. 42.
    Kumar RP, Geethakumari ML, Amma STJ (1995) Short sisal fiber reinforced styrene-butadiene rubber composites. J Appl Polym Sci 58:597–612CrossRefGoogle Scholar
  43. 43.
    Faruk O, Bledzki AK, Fink H, Sain M (2012) biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596CrossRefGoogle Scholar
  44. 44.
    Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fiber composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112CrossRefGoogle Scholar
  45. 45.
    Agostini D, Constantino C, Job A (2008) Thermal degradation of both latex and latex cast films forming membranes: combined TG/FTIR investigation. J Therm Anal Calorim 91(3):703–707CrossRefGoogle Scholar
  46. 46.
    Dall’Antonia AC, Martins MA, Moreno R, Mattoso LH, Gonçalves PS, Job AE (2009) Mechanical and thermal characterization of the formulated and vulcanized natural rubber of the clones: GT 1, IAN 873, PB 235 e RRIM 600. Polímeros 19(1):63–71CrossRefGoogle Scholar
  47. 47.
    Nallasamy P, Mohan S (2004) Vibrational spectra of cis-1, 4-polyisoprene. Arab J Sci Eng 29(1):17–26Google Scholar
  48. 48.
    Cabrera FC, Mohan H, Dos Santos RJ, Agostini DL, Aroca RF, Rodríguez-Pérez MA, Job AE (2013) Green synthesis of gold nanoparticles with self-sustained natural rubber membranes. J Nanomater 2013:110CrossRefGoogle Scholar
  49. 49.
    Fischer W, Nickolaus (1987) Manual do PFI—Testing and Research Institute for Footwear Production. Ed. PFI, Pirmasens, p 190Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  • Fábio Friol Guedes de Paiva
    • 1
  • Vitor Peixoto Klienchen de Maria
    • 1
  • Giovani Barrera Torres
    • 2
  • Guilherme Dognani
    • 1
  • Renivaldo José dos Santos
    • 3
  • Flávio Camargo Cabrera
    • 1
  • Aldo Eloizo Job
    • 1
    Email author
  1. 1.Departamento de FísicaQuímica e Biologia Faculdade de Ciências e Tecnologia - FCT/UNESPPresidente PrudenteBrazil
  2. 2.Facultad de Artes y HumanidadesInstituto Tecnológico MetropolitanoMedellínColombia
  3. 3.Campus Experimental de Rosana-UNESPRosanaBrazil

Personalised recommendations