Skip to main content
Log in

Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

In many countries, agricultural wastes cause significant air pollution due owing the burning of large amounts of residue. Biocomposites represent a new generation of materials that are eco-friendly, CO2-neutral, economical, low-density and non-petroleum derivatives. They have been widely used to facilitate the reuse of waste and protect the environment. Here, we introduce the reuse of sugarcane bagasse fiber, untreated (SCBU) and alkaline treated (SCBT) by incorporation as reinforcement filler in natural rubber composites used in the manufacture of sandals. Composites were prepared using untreated residue and compared with those treated with 10% sodium hydroxide. The alkali treatment allowed to incorporate high amounts of residue without loss of mechanical properties. The alkali treatment decreased 20% of hardness, increased 98% of tensile strength, maintained the flexibility of the rubber composites, increasing elongation at break to 546% (treated) from 303% (untreated), comparing 40 phr of residue. The composite was used in the preparation of sandals adhering to requirements specified in Testing and Research Institute for the Manufacture of Footwear and paves the way for technological innovation in footwear.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Silva DC, Melo CA, Junior FHS, Moreira AB, Ferreira OP, Bisinoti MC (2017) Effect of the reaction medium on the immobilization of nutrients in hydrochars obtained using sugarcane industry residues. Biores Technol 237:213–221

    Article  Google Scholar 

  2. Bizzo WA, Scarf PC, Carvalho DJ, Veiga JPS (2014) The generation of residual biomass during the production of bio-ethanol from sugarcane, its characterization and its use in energy production. Renew Sustain Energy Rev 29:589–603

    Article  Google Scholar 

  3. Alavi N, Daneshpajou M, Shirmardi M, Goudarzi G, Neisi A, Babaei AA (2017) Investigating the efficiency of co-composting and vermicomposting of vinasse with the mixture of cow manure wastes, bagasse, and natural zeolite. Waste Manag 69:117–126

    Article  Google Scholar 

  4. Tuyên DV, Phuong HN, Cone JW, Baars JJP, Sonnenberg ASM, Hendriks WH (2013) Effect of fungal treatments of fibrous agricultural by-products on chemical composition and in vitro rumen fermentation and methane production. Bioresour Technol 129:256–263

    Article  Google Scholar 

  5. Piedrahita JCA, Garcia RH, Rangel JMM, Calvo HL, Tamez PLV, Reyes JM (2016) Mechanical properties and durability of mortars prepared with untreated sugarcane bagasse ash and fly ash. Construct Build Mater 105:69–81

    Article  Google Scholar 

  6. Moubarik A, Grimi N, Boussetta N (2013) Structural and thermal characterization of Moroccan sugar cane bagasse and their applications cellulose fibers as a reinforcing agent in low density polyethylene. Compos Part B Eng 52:233–238

    Article  Google Scholar 

  7. Huang L, Wang P (2017) Effects of preparation conditions on properties of rigid polyurethane foam composites based on liquefied bagasse and jute fiber. Polym Test 60:266–273

    Article  Google Scholar 

  8. Cao Y. Shibata S, Fukumoto I (2006) Mechanical properties of biodegradable bagasse fiber composites reinforced with alkali before and after treatments. Compos Part A Appl Sci Manuf 37:423–429

    Article  Google Scholar 

  9. Light SM, Costa SM, Goncalves AR, Junior ODA, Costa SA (2016) Polypropylene composites reinforced with biodegraded sugarcane bagasse fibers: static and dynamic mechanical properties. Mater Res 19:75–83

    Article  Google Scholar 

  10. Sukudom N, Jariyasakoolroj P, Jarupan L (2018) Mechanical, thermal, and biodegradable behaviors of poly(vinyl alcohol) biocomposite with reinforcement of oil palm frond fiber. J Mater Cycles Waste Manag. https://doi.org/10.1007/s10163-018-0773-y

    Google Scholar 

  11. Shivamurthy B, Murthy K, Joseph PC, Rishi K, Bhat KU, Anandhan S (2015) Mechanical properties and sliding wear behavior of jatropha seed cake waste/epoxy composites. J Mater Cycles Waste Manage 17(1):144–156

    Article  Google Scholar 

  12. Barczewski M, Matykiewicz D, Krygier A, Andrzejewski J, Skórczewska K (2018) Characterization of poly (lactic acid) biocomposites filled with chestnut shell waste. J Mater Cycles Waste Manage 20(2):914–924

    Article  Google Scholar 

  13. Pittayavinai P, Thanawan S, Amornsakchai T (2016) Manipulation of mechanical properties of short pineapple leaf fiber reinforced natural rubber composites through variations in cross-link density and carbon black loading. Polym Test 54:84–89

    Article  Google Scholar 

  14. Jacob M, Thomas S, Varughese KT (2004) Mechanical properties of sisal/oil palm hybrid fiber reinforced natural rubber composites. Compos Sci Technol 64:955–965

    Article  Google Scholar 

  15. Pantamanatsopa P, Ariyawiriyanan W, Meekeaw T, Suthamyong R, Arrub K, Hamada H (2014) Effect of modified jute fiber on mechanical properties of green rubber composite. Proc Energy 56:641–647

    Article  Google Scholar 

  16. Ismail H, Edyham MR, Wirjosentono B (2002) Natural bamboo fiber filled composite rubber: the effects of filler loading and bonding agent. Polym Test 21:139–144

    Article  Google Scholar 

  17. Geethamma VG, Kalaprasad G, Groeninckx G, Thomas S (2005) Dynamic mechanical behavior of short coir fiber reinforced natural rubber composites. Compos Part A Appl Sci Manuf 36:1499–1506

    Article  Google Scholar 

  18. Santos RJ, Agostini DLS, Cabrera FC, Reis EAP, Ruiz MR, Budemberg ER, Teixeira SR, Job AE (2014) Sugarcane bagasse ash: new filler to natural rubber composite. Polymers 24:646–653

    Google Scholar 

  19. Garcia NG, Reis EAP, Budemberg ER, Agostini DLS, Salmazo LO, Cabrera FC, Job AEJ (2015) Natural rubber/leather waste composite foam: a new eco-friendly material and recycling approach. J Appl Polym Sci 132(11):41636

    Google Scholar 

  20. Formela K, Hejna A, Piszczyk Ł, Saeb MR, Colom X (2016) Processing and structure–property relationships of natural rubber/wheat bran biocomposites. Cellulose 23(5):3157–3175

    Article  Google Scholar 

  21. Pongdong W, Kummerlöwe C, Vennemann N, Thitithammawong A, Nakason C (2016) Property correlations for dynamically cured rice husk ash filled epoxidized natural rubber/thermoplastic polyurethane blends: Influences of RHA loading. Polym Test 53:245–256

    Article  Google Scholar 

  22. Neto WPF, Mariano M, da Silva ISV, Silvério HA, Putaux JL, Otaguro H, Dufresne A (2016) Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym 153:143–152

    Article  Google Scholar 

  23. Westerlind BS, Berg JCJ (1988) Surface energy of untreated and surface-modified cellulose fibers. J Appl Polym Sci 36:523–534

    Article  Google Scholar 

  24. Motaung TE, Anandjiwala RD (2015) Effect of alkali and acid treatment on thermal degradation kinetics of sugar cane bagasse. Ind Crops Prod 74:472–477

    Article  Google Scholar 

  25. Hossain MK, Karim MR, Chowdhury MR, Imam MA, Hosur M, Jeelani S, Farag R (2014) Comparative mechanical and thermal study of chemically treated and untreated single sugarcane fiber bundle. Ind Crops Prod 58:78–90

    Article  Google Scholar 

  26. Brahmakumar M, Pavithran C, Pillai RM (2005) Coconut fiber reinforced polyethylene composites: effect of natural waxy surface layer of the fiber on fiber/matrix interfacial bonding and strength of composites. Compos Sci Technol 65:563–569

    Article  Google Scholar 

  27. Abdelmouleh M, Boufi S, Belgace MN, Dufresme A (2007) Short natural-fibre reinforced polyethylene and natural rubber composites: effect of silane coupling agents and fibres loading. Compos Sci Technol 67:1627–1639

    Article  Google Scholar 

  28. Sanchez E, Cavani CS, Leão CV, Sanchez CG (2010) Unsaturated polyester resin composite with sugar cane bagasse: influence of treatment on the fibers properties. Polímeros 20:194–200

    Article  Google Scholar 

  29. American Society for Testing and Materials (ASTM). ASTM D 2084-01 standard test method for rubber property-vulcanization using oscillating disk cure meter, USA. http://file.yizimg.com/175706/2012010818310765.pdf. Accessed 15 Oct 2016

  30. American Society for Testing Materials (ASTM) (2010) D 5963 test method for rubber property—abrasion resistance (rotary drum abrader)

  31. American Society for Testing Materials (ASTM) (2010) D 2240. Test method for rubber property—durometer hardness

  32. Vieyres A, Aparicio RP, Albouy PA, Sanseau O, Saalwächter K, Long DR, Sotta P (2013) Sulfur-cured natural rubber elastomer networks: correlating cross-link density, chain orientation, and mechanical response by combined techniques. Macromolecules 46:889–899

    Article  Google Scholar 

  33. Flory PJ, Rehner JJ Jr (1943) Statistical mechanics of cross-linked polymer networks II. swelling. J Chem Phys 11:521–526

    Article  Google Scholar 

  34. Teixeira SR, Souza AE, Santos GTA, Peña AFVJ (2008) Sugarcane bagasse ash as a potential replacement quartz in red ceramic. J Am Ceram Soc 91:1883–1887

    Article  Google Scholar 

  35. Teixeira SR, Pena AFV, Miguel AG (2010) Briquetting of charcoal from sugar-cane bagasse fly ash (scbfa) as an alternative fuel. Waste Manag 30(5):804–807

    Article  Google Scholar 

  36. Li X, Tabil LG, Panigrahi SJ (2007) Chemical treatments of natural fiber for use in natural fiber-reinforced composites: a review. J Polym Environ 15:25–33

    Article  Google Scholar 

  37. Kabir MM, Wang H, Lau KT, Cardona F (2013) Tensile properties of chemically treated hemp fibres as reinforcement for composites. Compos Part B Eng 53:362–368

    Article  Google Scholar 

  38. Joseph K, Thomas S, Pavithran C (1996) Effect of chemical treatment on the tensile properties of short sisal fibre-reinforced polyethylene composites. Polymer 37(23):5139–5149

    Article  Google Scholar 

  39. Iacovita C, Stiufiuc R, Radu T, Florea A, Dutu A, Mican S, Tetean R, Lucaciu CM (2015) Polyethylene glycol-mediated synthesis of cubic iron oxide nanoparticles with high heating power. Nanosc Res Lett 10(1):391

    Article  Google Scholar 

  40. Mothé CG, Miranda IC (2009) Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J Therm Anal Calorim 97(2):661–665

    Article  Google Scholar 

  41. Mahmoodi NM, Khorramfar S, Najafi F (2011) Amine-functionalized silica nanoparticle: preparation, characterization and anionic dye removal ability. Desalination 279:61–68

    Article  Google Scholar 

  42. Kumar RP, Geethakumari ML, Amma STJ (1995) Short sisal fiber reinforced styrene-butadiene rubber composites. J Appl Polym Sci 58:597–612

    Article  Google Scholar 

  43. Faruk O, Bledzki AK, Fink H, Sain M (2012) biocomposites reinforced with natural fibers: 2000–2010. Prog Polym Sci 37:1552–1596

    Article  Google Scholar 

  44. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fiber composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112

    Article  Google Scholar 

  45. Agostini D, Constantino C, Job A (2008) Thermal degradation of both latex and latex cast films forming membranes: combined TG/FTIR investigation. J Therm Anal Calorim 91(3):703–707

    Article  Google Scholar 

  46. Dall’Antonia AC, Martins MA, Moreno R, Mattoso LH, Gonçalves PS, Job AE (2009) Mechanical and thermal characterization of the formulated and vulcanized natural rubber of the clones: GT 1, IAN 873, PB 235 e RRIM 600. Polímeros 19(1):63–71

    Article  Google Scholar 

  47. Nallasamy P, Mohan S (2004) Vibrational spectra of cis-1, 4-polyisoprene. Arab J Sci Eng 29(1):17–26

    Google Scholar 

  48. Cabrera FC, Mohan H, Dos Santos RJ, Agostini DL, Aroca RF, Rodríguez-Pérez MA, Job AE (2013) Green synthesis of gold nanoparticles with self-sustained natural rubber membranes. J Nanomater 2013:110

    Article  Google Scholar 

  49. Fischer W, Nickolaus (1987) Manual do PFI—Testing and Research Institute for Footwear Production. Ed. PFI, Pirmasens, p 190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aldo Eloizo Job.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paiva, F.F.G., de Maria, V.P.K., Torres, G.B. et al. Sugarcane bagasse fiber as semi-reinforcement filler in natural rubber composite sandals. J Mater Cycles Waste Manag 21, 326–335 (2019). https://doi.org/10.1007/s10163-018-0801-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-018-0801-y

Keywords

Navigation