Skip to main content

Advertisement

Log in

Asbestos treatment technologies

  • REVIEW
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

The use of asbestos was banned because of the carcinogenic properties of its fibres, but asbestos-containing wastes are still present in great amounts. They are currently landfilled or encapsulated with resins, but these approaches led to the release of fibres in the environment. Hence, the destruction of asbestos fibres is now regarded as a preferable option. This study aims at reviewing the currently available technologies for the destruction of asbestos fibres, considering thermal, chemical and mechanochemical processes. The considered thermal treatments include both standard vitrification and thermal treatments with controlled recrystallization. Advantages and applications of the addition of other inorganic materials are described, and the use of microwaves and oxyhydrogen as heat carrier are discussed in full details. The best practices for chemical treatments based on strong acidic or basic solutions are reported, as well as the use of fluorine. This study also investigates the reaction of asbestos with reducing agents in the self-propagating high-temperature syntheses and the use of supercritical water in a hydrothermal treatment. Mechanochemical processes such as high-energy milling are also reviewed. A comparison is given in terms of energy costs, consumption of chemicals, emissions and final use of obtained byproducts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Yanagisawa K, Kozawa T, Onda A, Kanazawa M, Shinohara J, Takanami T, Shiraishi M (2009) A novel decomposition technique of friable asbestos by CHClF 2-decomposed acidic gas. J Hazard Mater 163:593–599

    Article  Google Scholar 

  2. Yvon Y, Sharrock P (2011) Characterization of thermochemical inactivation of asbestos containing wastes and recycling the mineral residues in cement products. Waste Biomass Valor 2:169–181

    Article  Google Scholar 

  3. Leonelli C, Veronesi P, Boccaccini DN, Rivasi MR, Barbieri L, Andreola F, Lancellotti I, Rabitti D, Pellacani GC (2006) Microwave thermal inertisation of asbestos containing waste and its recycling in traditional ceramics. J Hazard Mater B 135:149–155

    Article  Google Scholar 

  4. Kusiorowski R, Zaremba T, Piotrowski J, Podworny J (2015) Utilisation of cement-asbestos wastes by thermal treatment and the potential possibility use of obtained product for the clinker bricks manufacture. J Mater Sci 50:6757–6767

    Article  Google Scholar 

  5. Kusiorowski R, Zaremba T, Piotrowski J, Adamek J (2012) Thermal decomposition of different types of asbestos. J Thermal Anal Calorimetr 109:693–704

    Article  Google Scholar 

  6. Klein C (2002) The manual of mineral science, 22nd edn. Wiley, Amsterdam. ISBN 0-471-25177-1

  7. Min SY, Maken S, Park JW, Gaur A, Hyun JS (2008) Melting treatment of waste asbestos using mixture of hydrogen and oxygen produced from water electrolysis. Korean J Chem Eng 25:323–328

    Article  Google Scholar 

  8. IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes I to 42. IARC, Lyon, IARC Monographs, Suppl. 7, 139–142

  9. WHO (2006) Elimination of asbestos-related diseases. World Health Organization, Geneva. http://www.who.int/occupational_health/publications/asbestosrelateddiseases.pdf. Last Access Jan 2018

  10. Deng Q, Lan YJ, Wang MZ (2009) 30 years follow up study: the dose-response relationship of asbestos exposure and asbestosis. Mod Prev Med 36:2027–2029

    Google Scholar 

  11. Wang X, Courtice MN, Lin S (2013) Mortality in chrysotile asbestos workers in China. Curr Opin Pulmon Med 19:169–173

    Article  Google Scholar 

  12. ILO (2006) Resolution concerning asbestos (Adopted by the 95th Session of the International Labour Conference, June 2006). International Labour Organization, Geneva. http://www.ilo.org/safework/info/standards-and-instruments/WCMS_108556/lang--en/index.htm. Last accessed Jan 2018

  13. Bianchi C, Bianchi T (2012) Malignant mesothelioma in Eastern asia. Asian Pac J Cancer Prev 13:4849–4853

    Article  Google Scholar 

  14. Nielsen LS, Bælum J, Rasmussen J, Dahl S, Olsen KE, Albin M, Sherson D (2014) Occupational asbestos exposure and lung cancer—a systematic review of the literature. Arch Environ Occup Health 69:191–206

    Article  Google Scholar 

  15. Noonan CW, Conway K, Landguth EL, McNew T, Linker L, Pfau J, Flores R (2015) Multiple pathway asbestos exposure assessment for a Superfund community. J Expos Sci Environ Epidemiol 25:18–25

    Article  Google Scholar 

  16. Nishimura Y, Maeda M, Kumagai-Takei N, Lee S, Matsuzaki H, Wada Y, Otsuki T (2013) Altered functions of alveolar macrophages and NK cells involved in asbestos-related diseases. Environ Health Prev Med 18:198–204

    Article  Google Scholar 

  17. Guo X, Xiang D, Duan G, Mou P (2010) A review of mechanochemistry applications in waste management. Waste Manag 30:4–10

    Article  Google Scholar 

  18. Kusiorowski R, Zaremba T, Gerle A, Piotrowski J, Simka W, Adamek J (2015) Study on the thermal decomposition of crocidolite asbestos. J Therm Anal Calorim 120:1585–1595

    Article  Google Scholar 

  19. Boen R, Jouan A, Largillier JJ, Pilliol H (1992) Procédé de destruction des fibres de l’amiante par fusion et dispositive de mise en oeuvre. Patent No FR2668726A1

  20. Bernard JC, Costedoat M, Curie P, Durr H, Foucher C, Morata G, Morot L (1997) Procédé de vitrification des fibres de l’amiante et dispositive pour sa mise en oeuvre. Patent No FR2749523A1

  21. Bernardo E, Scarinci G, Edme E, Michon U, Planty N (2009) Fast-Sintered gehlenite glass ceramics from plasma-vitrified municipal solid waste incinerator fly ashes. J Am Ceram Soc 92(2):528–530

    Article  Google Scholar 

  22. Simoni R, Bergamasco V, Bullian E (2012) Amianto ed ambiente. In: 5th regional conference on asbestos in Friuli Venezia Giulia, Gorizia July 29th 2012. http://eventi.regione.fvg.it/redazione/Reposit/Eventi/3581_02%20SIMONI%20BERGAMASCO%20BULLIAN-Amianto%20e%20ambiente.pdf. Last access Jan 2018

  23. Guilhaume P, Hebert J (1997) Procédé de traitment par vetrification de déchets amiantiferes, notamment issus du bâtiment, et installation de mise en oeuvre dudit procédé. Patent No FR2746037A1

  24. Osada M, Takamiya K, Manako K, Noguchi M, Sakai S (2013) Demonstration study of high temperature melting for asbestos-containing waste (ACW). J Mater Cycle Waste Manag 15:25–36

    Article  Google Scholar 

  25. Gualtieri AF, Tartaglia A (2000) Thermal decomposition of asbestos and recycling in traditional ceramics. J Eur Ceram Soc 20:1409–1418

    Article  Google Scholar 

  26. Gualtieri AF, Cavenati C, Zanatto I, Meloni M, Elmi G, Gualtieri M (2008) The transformation sequence of cement–asbestos slates up to 1200 °C and safe recycling of the reaction product in stoneware tile mixtures. J Hazard Mater 152:563–570

    Article  Google Scholar 

  27. Gualtieri AF, Veratti L, Tucci A, Esposito L (2012) Recycling of the product of thermal inertisation of cement-asbestos in geopolymers. Constr Build Mater 31:47–51

    Article  Google Scholar 

  28. Gualtieri AF, Zanatto I (2009) Industrial process for the direct temperature induced recrystallization of asbestos and/or mineral fibres containing waste products using a tunnel kiln and recycling. Patent No EP2027943B1

  29. Dieter J (1990) European patent application number EP0484866A2

  30. Belardi G, Maccari D, Marabini AM, Plescia P (1998) Process for producing ceramic type materials by processing waste containing asbestos and clay. Patent No WO199822410A1

  31. Jhonson HS, Roberts D (1985) Vitrification of asbestos waste. Patent No EP0145350A2

  32. De Luca S, Dinelli G (1995) Process for vitrifying compound materials containing asbestos. European patent application number EP0742032A2

  33. Italcementi (1992) Italian patent application number MI92A001803

  34. Parosa R (2005) Method for conversion of materials including asbestos. International patent application number WO2007053046A3

  35. Averroes A, Sekiguchi H, Sakamoto K (2011) Treatment of airborne asbestos and asbestos-like micro fibre particles using atmospheric microwave air plasma. J Hazard Mater 195:405–413

    Article  Google Scholar 

  36. Yoshikawa N, Kashimura K, Hashiguchi M, Sato M, Horikoshi S, Mitani T, Shinohara N (2015) Detoxification mechanism of asbestos materials by microwave treatment. J Hazard Mater 284:201–206

    Article  Google Scholar 

  37. Corradi AL, Lusvarghi MR, Rivasi C, Siligardi P, Veronesi G, Marucci M, Annibali A, Ragazzo G (2006) Waste treatment under microwave irradiation. In: Willert-Porada M (ed) Advances in microwave and radio frequency processing, Springer, Berlin, pp 341–348

    Chapter  Google Scholar 

  38. Boccaccini DN, Leonelli C, Rivasi MR, Romagnoli M, Veronesi P, Pellacani GC, Boccaccini AR (2007) Recycling of microwave inertised asbestos containing waste in refractory materials. J Eur Ceram Soc 27:1855–1858

    Article  Google Scholar 

  39. Yoshikawa N, Tokuyama Y (2009) Numerical simulation of temperature distribution in multi-phase materials as a result of selective heating by microwave energy. J Microw Power Electromagn Energy 43:27–33

    Article  Google Scholar 

  40. Horikoshi S, Sumi T, Ito S, Dillert R, Kashimura K, Yoshikawa N, Sato M, Shinohara N (2014) Microwave-driven asbestos treatment and its scale-up for use after natural disasters. Environ Sci Technol 48:6882–6890

    Article  Google Scholar 

  41. Spasiano D, Pirozzi F (2017) Treatments of asbestos containing wastes. J Environ Manag 204:82–91

    Article  Google Scholar 

  42. Kiyoji Y, Toshiya N (2009) Method of conducting treatment of non-asbestos treatment of asbestos containing construction material and gypsum composition obtained from the same. Japanese Patent No 2009018228

  43. Nam SN, Jeong S, Lim H (2014) Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid. J Hazard Mater 265:151–157

    Article  Google Scholar 

  44. Sugama T, Sabatini R, Petrakis L (1998) Decomposition of chrysotile asbestos by fluorosulfonic acid. Ind Eng Chem Res 37:79–88

    Article  Google Scholar 

  45. Nocito T (2014) Asbestos: Eliminating the Threat. Portal Environmental Expert. https://www.environmental-expert.com/articles/asbestos-eliminating-the-threat-432164. Last accessed Jan 2018

  46. Brown P (2006) In-situ treatment of asbestos-containing material. Patent Application No US10/989805

  47. Turci F, Tomatis M, Mantegna S, Cravotto G, Fubini B (2008) A new approach to the decontamination of asbestos-polluted waters by treatment with oxalic acid under power ultrasound. Ultrason Sonoch 15:420–427

    Article  Google Scholar 

  48. Pawełczyk A, Božek F, Grabas K, Checmanowski J (2016) Chemical elimination of the harmful properties of asbestos from military facilities. Waste Manag 61:377–385

    Article  Google Scholar 

  49. Favero-Longo SE, Girlanda M, Honegger R, Fubini B, Piervittori R (2007) Interactions of sterile-cultured lichen-forming ascomycetes with asbestos fibres. Mycological Res 111:473–481

    Article  Google Scholar 

  50. Debailleul G (1997) Method and plant for processing asbestos containing. Patent No WO199700099A1

  51. Tabata M, Shono M, Ghaffar A (2016) Decomposition of asbestos by a supernatant used for immobilization of heavy metals in fly ash. J Mater Cycle Waste Manag 18:483–492

    Article  Google Scholar 

  52. Trefler B, Pawelczyk A, Nowak M, Czarny A, Paszek A, Zwodziak J (2003) Polish Patent Application No P-359958

  53. Nowak M, Pawelczyk A, Trefler B (2004) The waste free method of utilizing asbestos and the products containing asbestos. Polish J Chem Technol 6:60–63

    Google Scholar 

  54. Mirick W (1991) Method for treating asbestos, Patent No US5041277A

  55. Forrester WB, Mirick W (1993) Method and products for treating asbestos. Patent No US5264655A

  56. Forrester WB, Mirick W (1993) Method for treating asbestos. Patent No US258562A

  57. Forrester WB, Mirick W (1993) Products for treating asbestos. Patent No US5258131A

  58. Grassi S, Nano G, Servida A, Servida A (2010) Method and plant for treatment of asbestos containing waste materials in supercritical water. Patent No US20100234667A1

  59. Balducci G, Foresti E, Lelli M, Lesci IG, Marchetti M, Pierini F, Roveri N (2012) Process for treating an asbestos containing material. Patent No EP2428254B1

  60. Porcu M, Orrù R, Cincotti A, Cao G (2005) Self-Propagating reactions for environmental protection: treatment of wastes containing asbestos. Ind Eng Chem Res 44:85–91

    Article  Google Scholar 

  61. Paolini V, Guerriero E, Bacaloni A, Rotatori M, Benedetti P, Mosca S (2016) Simultaneous sampling of vapor and particle-phase carcinogenic polycyclic aromatic hydrocarbons on functionalized glass fiber filters. Aerosol Air Qual Res 16:175–183

    Article  Google Scholar 

  62. Swidersky HW, Legat W, Becker A, Born T (1993) European patent application number EP0658526A1

  63. Anastasiadou K, Axiotis D, Gidarakos E (2010) Hydrothermal conversion of chrysotile asbestos using near supercritical conditions. J Hazard Mater 179:926–932

    Article  Google Scholar 

  64. Belfortini C, Ferretti M, Gaggero L, Isola E (2011) Method and apparatus for inertisation of asbestos. Italian Patent No ITGE2010A000032A1

  65. Plescia P, Gizzi D, Benedetti S, Camilucci L, Fanizza C, De Simone P, Paglietti F (2003) Mechanochemical treatment to recycling asbestos-containing waste. Waste Manag 23:209–218

    Article  Google Scholar 

  66. Colangelo F, Cioffi R, Lavorgna M, Verdolotti L, De Stefano L (2011) Treatment and recycling of asbestos-cement containing waste. J Hazard Mater 195:391–397

    Article  Google Scholar 

  67. Cioffi R, Marroccoli R, Martone G, Santoro L (1997) Utilization of zeolite-rich tuff for the manufacture of building materials based on calcium silicate and trisulphoaluminate hydrates. Thermochim Acta 306:93–98

    Article  Google Scholar 

  68. Inoue R, Kano J, Shimme K, Aito F (2007) Safe decomposition of asbestos by mechano-chemical reaction. Mater Sci Forum 561:2257–2260

    Article  Google Scholar 

  69. Yoshifumi K (2006) Asbestos crushing system and asbestos crushing method. Japanese patent application JP2007301531A

Download references

Acknowledgements

This work was supported by the Italian Ministry of Environment and Land and Sea Protection, General Direction for Waste and Pollution (MATTM-DGRIN), under the Agreement RINDEC-20016-4 of November 25th 2015, with the Institute for Atmospheric Pollution Research of the National Research Council of Italy (CNR IIA), entitled “Development of a novel methodology for asbestos inertization, emission abatement and analysis of the supply chain”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valerio Paolini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paolini, V., Tomassetti, L., Segreto, M. et al. Asbestos treatment technologies. J Mater Cycles Waste Manag 21, 205–226 (2019). https://doi.org/10.1007/s10163-018-0793-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-018-0793-7

Keywords

Navigation