Advertisement

Asbestos treatment technologies

  • Valerio PaoliniEmail author
  • Laura Tomassetti
  • Marco Segreto
  • Daniele Borin
  • Flavia Liotta
  • Marco Torre
  • Francesco Petracchini
REVIEW

Abstract

The use of asbestos was banned because of the carcinogenic properties of its fibres, but asbestos-containing wastes are still present in great amounts. They are currently landfilled or encapsulated with resins, but these approaches led to the release of fibres in the environment. Hence, the destruction of asbestos fibres is now regarded as a preferable option. This study aims at reviewing the currently available technologies for the destruction of asbestos fibres, considering thermal, chemical and mechanochemical processes. The considered thermal treatments include both standard vitrification and thermal treatments with controlled recrystallization. Advantages and applications of the addition of other inorganic materials are described, and the use of microwaves and oxyhydrogen as heat carrier are discussed in full details. The best practices for chemical treatments based on strong acidic or basic solutions are reported, as well as the use of fluorine. This study also investigates the reaction of asbestos with reducing agents in the self-propagating high-temperature syntheses and the use of supercritical water in a hydrothermal treatment. Mechanochemical processes such as high-energy milling are also reviewed. A comparison is given in terms of energy costs, consumption of chemicals, emissions and final use of obtained byproducts.

Keywords

Asbestos-containing materials (ACM) Microwave Supercritical water 

Notes

Acknowledgements

This work was supported by the Italian Ministry of Environment and Land and Sea Protection, General Direction for Waste and Pollution (MATTM-DGRIN), under the Agreement RINDEC-20016-4 of November 25th 2015, with the Institute for Atmospheric Pollution Research of the National Research Council of Italy (CNR IIA), entitled “Development of a novel methodology for asbestos inertization, emission abatement and analysis of the supply chain”.

References

  1. 1.
    Yanagisawa K, Kozawa T, Onda A, Kanazawa M, Shinohara J, Takanami T, Shiraishi M (2009) A novel decomposition technique of friable asbestos by CHClF 2-decomposed acidic gas. J Hazard Mater 163:593–599CrossRefGoogle Scholar
  2. 2.
    Yvon Y, Sharrock P (2011) Characterization of thermochemical inactivation of asbestos containing wastes and recycling the mineral residues in cement products. Waste Biomass Valor 2:169–181CrossRefGoogle Scholar
  3. 3.
    Leonelli C, Veronesi P, Boccaccini DN, Rivasi MR, Barbieri L, Andreola F, Lancellotti I, Rabitti D, Pellacani GC (2006) Microwave thermal inertisation of asbestos containing waste and its recycling in traditional ceramics. J Hazard Mater B 135:149–155CrossRefGoogle Scholar
  4. 4.
    Kusiorowski R, Zaremba T, Piotrowski J, Podworny J (2015) Utilisation of cement-asbestos wastes by thermal treatment and the potential possibility use of obtained product for the clinker bricks manufacture. J Mater Sci 50:6757–6767CrossRefGoogle Scholar
  5. 5.
    Kusiorowski R, Zaremba T, Piotrowski J, Adamek J (2012) Thermal decomposition of different types of asbestos. J Thermal Anal Calorimetr 109:693–704CrossRefGoogle Scholar
  6. 6.
    Klein C (2002) The manual of mineral science, 22nd edn. Wiley, Amsterdam. ISBN 0-471-25177-1Google Scholar
  7. 7.
    Min SY, Maken S, Park JW, Gaur A, Hyun JS (2008) Melting treatment of waste asbestos using mixture of hydrogen and oxygen produced from water electrolysis. Korean J Chem Eng 25:323–328CrossRefGoogle Scholar
  8. 8.
    IARC (1987) Overall evaluations of carcinogenicity: an updating of IARC monographs volumes I to 42. IARC, Lyon, IARC Monographs, Suppl. 7, 139–142Google Scholar
  9. 9.
    WHO (2006) Elimination of asbestos-related diseases. World Health Organization, Geneva. http://www.who.int/occupational_health/publications/asbestosrelateddiseases.pdf. Last Access Jan 2018
  10. 10.
    Deng Q, Lan YJ, Wang MZ (2009) 30 years follow up study: the dose-response relationship of asbestos exposure and asbestosis. Mod Prev Med 36:2027–2029Google Scholar
  11. 11.
    Wang X, Courtice MN, Lin S (2013) Mortality in chrysotile asbestos workers in China. Curr Opin Pulmon Med 19:169–173CrossRefGoogle Scholar
  12. 12.
    ILO (2006) Resolution concerning asbestos (Adopted by the 95th Session of the International Labour Conference, June 2006). International Labour Organization, Geneva. http://www.ilo.org/safework/info/standards-and-instruments/WCMS_108556/lang--en/index.htm. Last accessed Jan 2018
  13. 13.
    Bianchi C, Bianchi T (2012) Malignant mesothelioma in Eastern asia. Asian Pac J Cancer Prev 13:4849–4853CrossRefGoogle Scholar
  14. 14.
    Nielsen LS, Bælum J, Rasmussen J, Dahl S, Olsen KE, Albin M, Sherson D (2014) Occupational asbestos exposure and lung cancer—a systematic review of the literature. Arch Environ Occup Health 69:191–206CrossRefGoogle Scholar
  15. 15.
    Noonan CW, Conway K, Landguth EL, McNew T, Linker L, Pfau J, Flores R (2015) Multiple pathway asbestos exposure assessment for a Superfund community. J Expos Sci Environ Epidemiol 25:18–25CrossRefGoogle Scholar
  16. 16.
    Nishimura Y, Maeda M, Kumagai-Takei N, Lee S, Matsuzaki H, Wada Y, Otsuki T (2013) Altered functions of alveolar macrophages and NK cells involved in asbestos-related diseases. Environ Health Prev Med 18:198–204CrossRefGoogle Scholar
  17. 17.
    Guo X, Xiang D, Duan G, Mou P (2010) A review of mechanochemistry applications in waste management. Waste Manag 30:4–10CrossRefGoogle Scholar
  18. 18.
    Kusiorowski R, Zaremba T, Gerle A, Piotrowski J, Simka W, Adamek J (2015) Study on the thermal decomposition of crocidolite asbestos. J Therm Anal Calorim 120:1585–1595CrossRefGoogle Scholar
  19. 19.
    Boen R, Jouan A, Largillier JJ, Pilliol H (1992) Procédé de destruction des fibres de l’amiante par fusion et dispositive de mise en oeuvre. Patent No FR2668726A1Google Scholar
  20. 20.
    Bernard JC, Costedoat M, Curie P, Durr H, Foucher C, Morata G, Morot L (1997) Procédé de vitrification des fibres de l’amiante et dispositive pour sa mise en oeuvre. Patent No FR2749523A1Google Scholar
  21. 21.
    Bernardo E, Scarinci G, Edme E, Michon U, Planty N (2009) Fast-Sintered gehlenite glass ceramics from plasma-vitrified municipal solid waste incinerator fly ashes. J Am Ceram Soc 92(2):528–530CrossRefGoogle Scholar
  22. 22.
    Simoni R, Bergamasco V, Bullian E (2012) Amianto ed ambiente. In: 5th regional conference on asbestos in Friuli Venezia Giulia, Gorizia July 29th 2012. http://eventi.regione.fvg.it/redazione/Reposit/Eventi/3581_02%20SIMONI%20BERGAMASCO%20BULLIAN-Amianto%20e%20ambiente.pdf. Last access Jan 2018
  23. 23.
    Guilhaume P, Hebert J (1997) Procédé de traitment par vetrification de déchets amiantiferes, notamment issus du bâtiment, et installation de mise en oeuvre dudit procédé. Patent No FR2746037A1Google Scholar
  24. 24.
    Osada M, Takamiya K, Manako K, Noguchi M, Sakai S (2013) Demonstration study of high temperature melting for asbestos-containing waste (ACW). J Mater Cycle Waste Manag 15:25–36CrossRefGoogle Scholar
  25. 25.
    Gualtieri AF, Tartaglia A (2000) Thermal decomposition of asbestos and recycling in traditional ceramics. J Eur Ceram Soc 20:1409–1418CrossRefGoogle Scholar
  26. 26.
    Gualtieri AF, Cavenati C, Zanatto I, Meloni M, Elmi G, Gualtieri M (2008) The transformation sequence of cement–asbestos slates up to 1200 °C and safe recycling of the reaction product in stoneware tile mixtures. J Hazard Mater 152:563–570CrossRefGoogle Scholar
  27. 27.
    Gualtieri AF, Veratti L, Tucci A, Esposito L (2012) Recycling of the product of thermal inertisation of cement-asbestos in geopolymers. Constr Build Mater 31:47–51CrossRefGoogle Scholar
  28. 28.
    Gualtieri AF, Zanatto I (2009) Industrial process for the direct temperature induced recrystallization of asbestos and/or mineral fibres containing waste products using a tunnel kiln and recycling. Patent No EP2027943B1Google Scholar
  29. 29.
    Dieter J (1990) European patent application number EP0484866A2Google Scholar
  30. 30.
    Belardi G, Maccari D, Marabini AM, Plescia P (1998) Process for producing ceramic type materials by processing waste containing asbestos and clay. Patent No WO199822410A1Google Scholar
  31. 31.
    Jhonson HS, Roberts D (1985) Vitrification of asbestos waste. Patent No EP0145350A2Google Scholar
  32. 32.
    De Luca S, Dinelli G (1995) Process for vitrifying compound materials containing asbestos. European patent application number EP0742032A2Google Scholar
  33. 33.
    Italcementi (1992) Italian patent application number MI92A001803Google Scholar
  34. 34.
    Parosa R (2005) Method for conversion of materials including asbestos. International patent application number WO2007053046A3Google Scholar
  35. 35.
    Averroes A, Sekiguchi H, Sakamoto K (2011) Treatment of airborne asbestos and asbestos-like micro fibre particles using atmospheric microwave air plasma. J Hazard Mater 195:405–413CrossRefGoogle Scholar
  36. 36.
    Yoshikawa N, Kashimura K, Hashiguchi M, Sato M, Horikoshi S, Mitani T, Shinohara N (2015) Detoxification mechanism of asbestos materials by microwave treatment. J Hazard Mater 284:201–206CrossRefGoogle Scholar
  37. 37.
    Corradi AL, Lusvarghi MR, Rivasi C, Siligardi P, Veronesi G, Marucci M, Annibali A, Ragazzo G (2006) Waste treatment under microwave irradiation. In: Willert-Porada M (ed) Advances in microwave and radio frequency processing, Springer, Berlin, pp 341–348CrossRefGoogle Scholar
  38. 38.
    Boccaccini DN, Leonelli C, Rivasi MR, Romagnoli M, Veronesi P, Pellacani GC, Boccaccini AR (2007) Recycling of microwave inertised asbestos containing waste in refractory materials. J Eur Ceram Soc 27:1855–1858CrossRefGoogle Scholar
  39. 39.
    Yoshikawa N, Tokuyama Y (2009) Numerical simulation of temperature distribution in multi-phase materials as a result of selective heating by microwave energy. J Microw Power Electromagn Energy 43:27–33CrossRefGoogle Scholar
  40. 40.
    Horikoshi S, Sumi T, Ito S, Dillert R, Kashimura K, Yoshikawa N, Sato M, Shinohara N (2014) Microwave-driven asbestos treatment and its scale-up for use after natural disasters. Environ Sci Technol 48:6882–6890CrossRefGoogle Scholar
  41. 41.
    Spasiano D, Pirozzi F (2017) Treatments of asbestos containing wastes. J Environ Manag 204:82–91CrossRefGoogle Scholar
  42. 42.
    Kiyoji Y, Toshiya N (2009) Method of conducting treatment of non-asbestos treatment of asbestos containing construction material and gypsum composition obtained from the same. Japanese Patent No 2009018228Google Scholar
  43. 43.
    Nam SN, Jeong S, Lim H (2014) Thermochemical destruction of asbestos-containing roofing slate and the feasibility of using recycled waste sulfuric acid. J Hazard Mater 265:151–157CrossRefGoogle Scholar
  44. 44.
    Sugama T, Sabatini R, Petrakis L (1998) Decomposition of chrysotile asbestos by fluorosulfonic acid. Ind Eng Chem Res 37:79–88CrossRefGoogle Scholar
  45. 45.
    Nocito T (2014) Asbestos: Eliminating the Threat. Portal Environmental Expert. https://www.environmental-expert.com/articles/asbestos-eliminating-the-threat-432164. Last accessed Jan 2018
  46. 46.
    Brown P (2006) In-situ treatment of asbestos-containing material. Patent Application No US10/989805Google Scholar
  47. 47.
    Turci F, Tomatis M, Mantegna S, Cravotto G, Fubini B (2008) A new approach to the decontamination of asbestos-polluted waters by treatment with oxalic acid under power ultrasound. Ultrason Sonoch 15:420–427CrossRefGoogle Scholar
  48. 48.
    Pawełczyk A, Božek F, Grabas K, Checmanowski J (2016) Chemical elimination of the harmful properties of asbestos from military facilities. Waste Manag 61:377–385CrossRefGoogle Scholar
  49. 49.
    Favero-Longo SE, Girlanda M, Honegger R, Fubini B, Piervittori R (2007) Interactions of sterile-cultured lichen-forming ascomycetes with asbestos fibres. Mycological Res 111:473–481CrossRefGoogle Scholar
  50. 50.
    Debailleul G (1997) Method and plant for processing asbestos containing. Patent No WO199700099A1Google Scholar
  51. 51.
    Tabata M, Shono M, Ghaffar A (2016) Decomposition of asbestos by a supernatant used for immobilization of heavy metals in fly ash. J Mater Cycle Waste Manag 18:483–492CrossRefGoogle Scholar
  52. 52.
    Trefler B, Pawelczyk A, Nowak M, Czarny A, Paszek A, Zwodziak J (2003) Polish Patent Application No P-359958Google Scholar
  53. 53.
    Nowak M, Pawelczyk A, Trefler B (2004) The waste free method of utilizing asbestos and the products containing asbestos. Polish J Chem Technol 6:60–63Google Scholar
  54. 54.
    Mirick W (1991) Method for treating asbestos, Patent No US5041277AGoogle Scholar
  55. 55.
    Forrester WB, Mirick W (1993) Method and products for treating asbestos. Patent No US5264655AGoogle Scholar
  56. 56.
    Forrester WB, Mirick W (1993) Method for treating asbestos. Patent No US258562AGoogle Scholar
  57. 57.
    Forrester WB, Mirick W (1993) Products for treating asbestos. Patent No US5258131AGoogle Scholar
  58. 58.
    Grassi S, Nano G, Servida A, Servida A (2010) Method and plant for treatment of asbestos containing waste materials in supercritical water. Patent No US20100234667A1Google Scholar
  59. 59.
    Balducci G, Foresti E, Lelli M, Lesci IG, Marchetti M, Pierini F, Roveri N (2012) Process for treating an asbestos containing material. Patent No EP2428254B1Google Scholar
  60. 60.
    Porcu M, Orrù R, Cincotti A, Cao G (2005) Self-Propagating reactions for environmental protection: treatment of wastes containing asbestos. Ind Eng Chem Res 44:85–91CrossRefGoogle Scholar
  61. 61.
    Paolini V, Guerriero E, Bacaloni A, Rotatori M, Benedetti P, Mosca S (2016) Simultaneous sampling of vapor and particle-phase carcinogenic polycyclic aromatic hydrocarbons on functionalized glass fiber filters. Aerosol Air Qual Res 16:175–183CrossRefGoogle Scholar
  62. 62.
    Swidersky HW, Legat W, Becker A, Born T (1993) European patent application number EP0658526A1Google Scholar
  63. 63.
    Anastasiadou K, Axiotis D, Gidarakos E (2010) Hydrothermal conversion of chrysotile asbestos using near supercritical conditions. J Hazard Mater 179:926–932CrossRefGoogle Scholar
  64. 64.
    Belfortini C, Ferretti M, Gaggero L, Isola E (2011) Method and apparatus for inertisation of asbestos. Italian Patent No ITGE2010A000032A1Google Scholar
  65. 65.
    Plescia P, Gizzi D, Benedetti S, Camilucci L, Fanizza C, De Simone P, Paglietti F (2003) Mechanochemical treatment to recycling asbestos-containing waste. Waste Manag 23:209–218CrossRefGoogle Scholar
  66. 66.
    Colangelo F, Cioffi R, Lavorgna M, Verdolotti L, De Stefano L (2011) Treatment and recycling of asbestos-cement containing waste. J Hazard Mater 195:391–397CrossRefGoogle Scholar
  67. 67.
    Cioffi R, Marroccoli R, Martone G, Santoro L (1997) Utilization of zeolite-rich tuff for the manufacture of building materials based on calcium silicate and trisulphoaluminate hydrates. Thermochim Acta 306:93–98CrossRefGoogle Scholar
  68. 68.
    Inoue R, Kano J, Shimme K, Aito F (2007) Safe decomposition of asbestos by mechano-chemical reaction. Mater Sci Forum 561:2257–2260CrossRefGoogle Scholar
  69. 69.
    Yoshifumi K (2006) Asbestos crushing system and asbestos crushing method. Japanese patent application JP2007301531AGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Research Council of ItalyInstitute of Atmospheric Pollution ResearchMonterotondoItaly

Personalised recommendations