Skip to main content
Log in

Microwave-assisted glucose production from bode (Styrax tonkinensis) woody biomass for bioethanol production

  • NOTE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Microwave (MW)-assisted acid hydrolysis of lignocellulosic material derived from bode (Styrax tonkinensis) wood to glucose was performed to find effective uses for discarded chopsticks. The maximum amount of glucose produced by MW-assisted acid hydrolysis (from 1 g of untreated bode wood cellulose) was 0.48 g, and was obtained by heating at 200 °C for 1 min using 1.0% (w/w) sulfuric acid as catalyst. However, the maximum total glucose yield from both MW-assisted acid hydrolysis (0.16 g) and enzymatic hydrolysis of the treated residue (0.52 g) was 0.68 g, which was obtained at a microwave heating temperature of 180 °C for 5 min using 1.0% (w/w) sulfuric acid as catalyst. In conclusion, the results showed that microwave-assisted treatment at 200 °C using 1.0% (w/w) sulfuric acid as catalyst facilitated MW-assisted acid hydrolysis of bode wood cellulose and treatment at 180 °C served as pretreatment for enzymatic hydrolysis of the treated residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Pauly M, Keegstra K (2008) Cell-wall carbohydrates and their modification as a resource for biofuels. Plant J 54:559–568. https://doi.org/10.1111/j.1365-313X.2008.03463.x

    Article  Google Scholar 

  2. Flores RJ, Fake G, Carroll J, Hood E, Howard J (2010) A novel method for evaluating the release of fermentable sugars from cellulosic biomass. Enzyme Microb Technol 47:206–211. https://doi.org/10.1016/j.enzmictec.2010.07.003

    Article  Google Scholar 

  3. Zheng Y, Pan Z, Zhang R, Labavitch JM, Wang D, Teter SA, Jenkins BM (2007) Evaluation of different biomass materials as feedstock for fermentable sugar production. Appl Biochem Biotechnol 136–140:423–436. https://doi.org/10.1007/s12010-007-9069-8

    Google Scholar 

  4. Zhao X, Zhang L, Liu D (2012) Biomass recalcitrance. Part II: fundamentals of different pre-treatments to increase the enzymatic digestibility of lignocellulose. Biofuels Bioprod Bioref 6:561–579. https://doi.org/10.1002/bbb.1350

    Article  Google Scholar 

  5. Hashaikeh R, Fang Z, Bulter IS, Hawari J, Kozinski JA (2007) Hydrothermal dissolution of willow in hot compressed water as a model for biomass conversion. Fuel 86:1614–1622. https://doi.org/10.1016/j.fuel.2006.11.005

    Article  Google Scholar 

  6. Luo G, Shi W, Chen X, Ni W, Strong PJ, Jia Y, Wang H (2011) Hydrothermal conversion of water lettuce biomass at 473 or 523 K. Biomass Bioenergy 35:4855–4861. https://doi.org/10.1016/j.biombioe.2011.10.002

    Article  Google Scholar 

  7. Phaiboonsilpa N, Yamauchi K, Lu X, Saka S (2010) Two-step hydrolysis of Japanese cedar as treated by semi-flow compressed water. J Wood Sci 56:331–338. https://doi.org/10.1007/978-4-431-53910-0_18

    Article  Google Scholar 

  8. Sakaki T, Shibata M, Miki T, Hirose H, Hayashi N (1996) Decomposition of cellulose in near-critical water and fermentability of the products. Energy Fuels 10: 684–688. https://doi.org/10.1021/ef950160&%23x002B;

    Article  Google Scholar 

  9. Zhao Y, Lu WJ, Wang HT, Yang JL (2009) Fermentable hexose production from corn stalks and wheat straw with combined supercritical and subcritical hydrothermal technology. Bioresour Technol 100:5884–5889. https://doi.org/10.1016/j.biortech.2009.06.079

    Article  Google Scholar 

  10. Sasaki C, Sumimoto K, Asada C, Nakamura Y (2012) Direct hydrolysis of cellulose to glucose using ultra-high temperature and pressure steam explosion. Carbohydr Polym 89:298–301. https://doi.org/10.1016/j.carbpol.2012.02.040

    Article  Google Scholar 

  11. Diaz AB, Moretti MMS, Bezerra-Bussoli C, Nunes CCC, Blandino A, Silva R, Gomes E (2015) Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresour Technol 185:316–323. https://doi.org/10.1016/j.biortech.2015.02.112

    Article  Google Scholar 

  12. Jin S, Zhang G, Zhang P, Li F, Wang S, Fan S, Zhou S (2016) Microwave assisted alkaline pretreatment to enhance enzymatic saccharification of catalpa sawdust. Bioresour Technol 221:26–30. https://doi.org/10.1016/j.biortech.2016.09.033

    Article  Google Scholar 

  13. Sasaki C, Takada R, Watanabe T, Honda Y, Karita S, Nakamura Y, Watanabe T (2011) Surface carbohydrate analysis and bioethanol production of sugarcane bagasse pretreated with the white rot fungus, Ceriporiopsis subvermispora and microwave hydrothermolysis. Bioresour Technol 102:9942–9946. https://doi.org/10.1016/j.biortech.2011.07.027

    Article  Google Scholar 

  14. Chimentão RJ, Lorente E, Gispert-Guirado F, Medina F, Lopez F (2014) Hydrolysis of dilute acid-pretreated cellulose under mild hydrothermal conditions. Carbohydr Polym 111:116–124. https://doi.org/10.1016/j.carbpol.2014.04.001

    Article  Google Scholar 

  15. Ching TW, Haritos V, Tanksale A (2017) Microwave assisted conversion of microcrystalline cellulose into value added chemicals using dilute acid catalyst. Carbohydr Polym 157:1794–1800. https://doi.org/10.1016/j.carbpol.2016.11.066

    Article  Google Scholar 

  16. Hermiati E, Tsubaki S, Azuma J (2014) Cassava pulp hydrolysis under microwave irradiation with oxalic acid catalyst for ethanol production. J Math Fund Sci 46:125–139. https://doi.org/10.5614/j.math.fund.sci.2014.46.2.2

    Article  Google Scholar 

  17. Zhu Z, Rezende CA, Simister R, McQueen-Mason SJ, Macquarrie DJ, Polikarpov I, Gomez LD (2016) Efficient sugar production from sugarcane bagasse by microwave assisted acid and alkali pretreatment. Biomass Bioenergy 93:269–278. https://doi.org/10.1016/j.biombioe.2016.06.017

    Article  Google Scholar 

  18. Wang D, Kim DH, Yoon JI, Kim KH (2017) Production of high-value β-1,3-glucooligosaccharides by microwave-assisted hydrothermal hydrolysis of curdlan. Process Biochem 52:233–237. https://doi.org/10.1016/j.procbio.2016.11.005

    Article  Google Scholar 

  19. Bian J, Peng P, Peng F, Xiao X, Xu F, Sun RC (2014) Microwave-assisted acid hydrolysis to produce xylooligosaccharides from sugarcane bagasse hemicelluloses. Food chem 156:7–13. https://doi.org/10.1016/j.foodchem.2014.01.112

    Article  Google Scholar 

  20. Athikomkulchai S, Awale S, Ruangrungsi N, Ruchiwarat S, Kadota S (2013) Chemical constituents of Thai propolis. Fitoterapia 88:96–100. https://doi.org/10.1016/j.fitote.2013.04.008

    Article  Google Scholar 

  21. Sasaki C, Wanaka M, Takagi H, Tamura S, Asada C, Nakamura Y (2013) Evaluation of epoxy resins synthesized from steam-exploded bamboo lignin. Ind Crops Prod 43:757–761. https://doi.org/10.1016/j.indcrop.2012.08.018

    Article  Google Scholar 

  22. Dubois M, Gilles K, Hamilton JK, Rebers PA, Smith F (1951) A colorimetric method for the determination of sugars. Nature 168:167. https://doi.org/10.1021/ac60111a017

    Article  Google Scholar 

  23. Ulbricht RJ, Sharon J, Thomas J (1984) A review of 5-hydroxymethylfurfural HMF in parental solutions. Fundam Appl Toxicol 4:843–853. https://doi.org/10.1016/0272-0590(84)90106-4

    Article  Google Scholar 

  24. Palmqvist E, Hahn-Hägerdal B (2000) Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour Technol 74:25–33. https://doi.org/10.1016/S0960-8524(99)00161-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chizuru Sasaki.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sasaki, C., Negoro, H., Asada, C. et al. Microwave-assisted glucose production from bode (Styrax tonkinensis) woody biomass for bioethanol production. J Mater Cycles Waste Manag 21, 201–204 (2019). https://doi.org/10.1007/s10163-018-0783-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-018-0783-9

Keywords

Navigation