Skip to main content

Advertisement

Log in

Synthesis and characterization of natural rubber/coal fly ash composites via latex aqueous microdispersion

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

Composite films composed of uncured natural rubber (NR) combined with coal fly ash (CFA) and CFA treated by acid washing (CFAT), both acting as fillers, were developed. The goal was to add value to the CFA (which is an industrial waste) while improving the mechanical properties of the NR. These NR–CFA and NR–CFAT composites were fabricated using the latex aqueous microdispersion method to ensure suitable dispersion of the filler. The mechanical properties of both composites, including tensile strength, elongation at break and Young’s modulus, were improved considerably at a filler content of 20 phr compared to the original NR. Adding CFA and CFAT increased these values to 10.5 MPa, 222% and 126 and 7.7 MPa, 315% and 21.4 MPa, respectively. NR–CFA and NR–CFAT composites also exhibited substantially higher structural stability in water with only minimal swelling, as well as better resistance to toluene. The NR–CFA composite film containing CFA at 20 phr was found to have the best structural stability, mechanical properties and resistance to solvents among the specimens tested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Petchseechoung W (2106) Thailand industry outlook 2016–2018, rubber industry. https://www.krungsri.com/bank/getmedia/1d1b8758-8da1-44e3-af42-962b0b9f7506/IO_Rubber_2016_EN.aspx. Accessed 5 Jan 2018

  2. Phinyocheep P (2014) Chemical modification of natural rubber (NR) for improved performance. In: Kohjiya S, Ikeda Y (eds) Chemistry, manufacture and applications of natural rubber. Woodhead Publishing Ltd, Oxford, pp 68–118. https://doi.org/10.1533/9780857096913.1.68

    Chapter  Google Scholar 

  3. Intiya W, Thepsuwan U, Sirisinha C, Sae-Oui P (2017) Possible use of sludge ash as filler in natural rubber. J Mater Cycles Waste Manag 19:774–781. https://doi.org/10.1007/s10163-016-0480-5

    Article  Google Scholar 

  4. Sae-oui P, Sirisinha C, Thaptong P (2009) Utilization of limestone dust waste as filler in natural rubber. J Mater Cycles Waste Manag 11:166–171. https://doi.org/10.1007/s10163-008-0230-4

    Article  Google Scholar 

  5. Igwe IO, Ejim AA (2011) Studies on mechanical and end-use properties of natural rubber filled with snail shell powder. Mater Sci Appl 02:801–810. https://doi.org/10.4236/msa.2011.27109

    Google Scholar 

  6. Cokca E, Yilmaz Z (2004) Use of rubber and bentonite added fly ash as a liner material. Waste Manag 24:153–164. https://doi.org/10.1016/j.wasman.2003.10.004

    Article  Google Scholar 

  7. Peng Z, Kong LX, Li S-D, Chen Y, Huang MF (2007) Self-assembled natural rubber/silica nanocomposites: Its preparation and characterization. Compos Sci Technol 67:3130–3139. https://doi.org/10.1016/j.compscitech.2007.04.016

    Article  Google Scholar 

  8. Hasegawa M, Furukawa S, Asana M (2007) Utilization of the coal ash as filler of plastics and rubber products. In: Proceedings of international symposium on EcoTopia science (ISETS07). pp 842–845

  9. Rattanasom N, Saowapark T, Deeprasertkul C (2007) Reinforcement of natural rubber with silica/carbon black hybrid filler. Polym Test 26:369–377. https://doi.org/10.1016/j.polymertesting.2006.12.003

    Article  Google Scholar 

  10. Ooi ZX, Ismail H, Abu Bakar A (2013) Synergistic effect of oil palm ash filled natural rubber compound at low filler loading. Polym Test 32:38–44. https://doi.org/10.1016/j.polymertesting.2012.09.007

    Article  Google Scholar 

  11. Rajisha KR, Maria HJ, Pothan LA, Ahmad Z, Thomas S (2014) Preparation and characterization of potato starch nanocrystal reinforced natural rubber nanocomposites. Int J Biol Macromol 67:147–153. https://doi.org/10.1016/j.ijbiomac.2014.03.013

    Article  Google Scholar 

  12. Mariano M, El Kissi N, Dufresne A (2016) Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Carbohydr Polym 137:174–183. https://doi.org/10.1016/j.carbpol.2015.10.027

    Article  Google Scholar 

  13. Barrera CS, Cornish K (2015) Novel mineral and organic materials from agro-industrial residues as fillers for natural rubber. J Polym Environ 23:437–448. https://doi.org/10.1007/s10924-015-0737-4

    Article  Google Scholar 

  14. Barrera CS, Cornish K (2016) High performance waste-derived filler/carbon black reinforced guayule natural rubber composites rubber. Ind Crops Prod 86:132–142. https://doi.org/10.1016/j.indcrop.2016.03.021

    Article  Google Scholar 

  15. Energy Policy and Planning Office (2015) Thailand power development plan (PDP: 2015–2036). Ministry of Energy. http://www2.eppo.go.th/power/PDP2015/PDP2015.pdf. Accessed 5 Jan 2018

  16. Nyale SM, Babajide OO, Birch GD, Böke N, Petrik LF (2013) Synthesis and characterization of coal fly ash-based foamed geopolymer. Proc Environ Sci 18:722–730. https://doi.org/10.1016/j.proenv.2013.04.098

    Article  Google Scholar 

  17. Yao ZT, Ji XS, Sarker PK, Tang JH, Ge LQ, Xia MS, Xi YQ (2015) A comprehensive review on the applications of coal fly ash. Earth Sci Rev 141:105–121. https://doi.org/10.1016/j.earscirev.2014.11.016

    Article  Google Scholar 

  18. Wang L, Sun H, Sun Z, Ma E (2015) New technology and application of brick making with coal fly ash. J Mater Cycles Waste Manag 18:763–770. https://doi.org/10.1007/s10163-015-0368-9

    Article  Google Scholar 

  19. Kaur R, Goyal D (2014) Mineralogical comparison of coal fly ash with soil for use in agriculture. J Mater Cycles Waste Manag 18:186–200. https://doi.org/10.1007/s10163-014-0323-1

    Article  Google Scholar 

  20. Lee K-M, Jo Y-M (2010) Synthesis of zeolite from waste fly ash for adsorption of CO2. J Mater Cycles Waste Manag 12:212–219. https://doi.org/10.1007/s10163-010-0290-0

    Article  Google Scholar 

  21. Ruen-ngam D, Rungsuk D, Apiratikul R, Pavasant P (2009) Zeolite formation from coal fly ash and its adsorption potential. J Air Waste Manag Assoc 59:1140–1147. https://doi.org/10.3155/1047-3289.59.10.1140

    Article  Google Scholar 

  22. Koshy N, Singh DN (2016) Fly ash zeolites for water treatment applications. J Environ Chem Eng 4:1460–1472. https://doi.org/10.1016/j.jece.2016.02.002

    Article  Google Scholar 

  23. Panitchakarn P, Laosiripojana N, Viriya-umpikul N, Pavasant P (2014) Synthesis of high-purity Na-A and Na-X zeolite from coal fly ash. J Air Waste Manag Assoc 64:586–596. https://doi.org/10.1080/10962247.2013.859184

    Article  Google Scholar 

  24. Molina A, Poole C (2004) A comparative study using two methods to produce zeolites from fly ash. Miner Eng 17:167–173. https://doi.org/10.1016/j.mineng.2003.10.025

    Article  Google Scholar 

  25. Barrera CS, Cornish K (2017) Processing and mechanical properties of natural rubber/waste-derived nano filler composites compared to macro and micro filler composites. Ind Crops Prod 107:217–231. https://doi.org/10.1016/j.indcrop.2017.05.045 2017.

    Article  Google Scholar 

  26. Shivpuri KK, Kulkarni BL, Dikshit DA AK (2012) Metal leaching potential in coal fly ash. Am J Environ Eng 1:21–27. https://doi.org/10.5923/j.ajee.20110101.04

    Article  Google Scholar 

  27. Wajima T, Munakata K (2011) Material conversion from paper sludge ash in NaOH solution to synthesize adsorbent for removal of Pb2+, NH4 + and PO4 3– from aqueous solution. J Environ Sci 23:718–724. https://doi.org/10.1016/s1001-0742(10)60467-6

    Article  Google Scholar 

  28. Phomrak S, Phisalaphong M (2017) Reinforcement of natural rubber with bacterial cellulose via a latex aqueous microdispersion process. J Nanomater 2017:1–9. https://doi.org/10.1155/2017/4739793

    Article  Google Scholar 

  29. Dai Z, Liu S, Ju H, Chen H (2004) Direct electron transfer and enzymatic activity of hemoglobin in a hexagonal mesoporous silica matrix. Biosens Bioelectron 19:861–867. https://doi.org/10.1016/j.bios.2003.08.024

    Article  Google Scholar 

  30. Dzhurkov V, Nesheva D, Scepanovic M, Nedev N, Kaschieva S, Dmitriev SN, Popovic Z (2014) Spectroscopic studies of SiOx films irradiated with high energy electrons. J Phys Conf Ser 558(012045). https://doi.org/10.1088/1742-6596/558/1/012045

  31. Battisha IK, Beyally AE, Mongy SAE, Nahrawi AM (2007) Development of the FTIR properties of nano-structure silica gel doped with different rare earth elements, prepared by sol–gel route. J Sol Gel Sci Technol 41:129–137. https://doi.org/10.1007/s10971-006-0520-z

    Article  Google Scholar 

  32. Saikia BJ, Gopalakrishnarao Parthasarathy G (2010) Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, Northeastern India. J Mod Phys 1:206–210. https://doi.org/10.4236/jmp.2010.14031

    Article  Google Scholar 

  33. Poompradub S, Thirakulrati M, Prasassarakich P (2014) In situ generated silica in natural rubber latex via the sol–gel technique and properties of the silica rubber composites. Mater Chem Phys 144:122–131. https://doi.org/10.1016/j.matchemphys.2013.12.030

    Article  Google Scholar 

  34. Maan A, Niyogi UK, Singh AK, Mehra DS, Rattan S (2014) Development and characterization of fly ash reinforced natural rubber composite. J Polym Mater 31:397–408. https://doi.org/10.14233/ajchem.2016.19539

    Google Scholar 

  35. Obasi HC, Ogbobe O, Igwe IO (2009) Diffusion characteristics of toluene into natural rubber/linear low density polyethylene blends. Int J Polym Sci 2009:1–6. https://doi.org/10.1155/2009/140682

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support from the Ratchadaphiseksomphot Endowment Fund of Chulalongkorn University for Postdoctoral Fellowship and the kind support of CFA from the pulping process in Prachinburi province of Thailand. We thank Michael D. Judge, MSc. from Edanz Group (http://www.Edanzediting.com/ac) for editing a draft of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muenduen Phisalaphong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panitchakarn, P., Wikranvanich, J. & Phisalaphong, M. Synthesis and characterization of natural rubber/coal fly ash composites via latex aqueous microdispersion. J Mater Cycles Waste Manag 21, 134–144 (2019). https://doi.org/10.1007/s10163-018-0774-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-018-0774-x

Keywords

Navigation