Skip to main content
Log in

Development of a recycling solution for waste thermoset material: waste source study, comminution scheme and filler characterization

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

End of life electrical equipment is a continuously increasing source of waste in our modern society, and constitute an environmental problem. Understanding this type of waste flow is important to devise proper dismantlement and sorting strategies, and to maximize the material recovery rate and valorization. In this work, a waste pool constituted of electrical meter was studied. The specificities of this equipment in term of design were enlightened, and the overall material composition was determined. An emphasis was put on the characterization of the plastic fraction, both in term of plastic type and presence of regulated substances. It revealed that this fraction is mostly composed of phenolic molding compound (PMC), a thermoset material, which is troublesome in term of recycling. A material valorization solution through mechanical recycling is proposed, consisting in using PMC as functional filler in a thermoplastic matrix. A comminution scheme to obtain such filler is presented in this work, and the comminuted products are characterized. Through 2 or 3 steps of comminution, particle size below 50 µm can be obtained, which is expected to be a sufficient size for incorporation in a thermoplastic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Ministère de l’environnement de l’énergie et de la mer (2014) Filières de responsabilité élargie du producteur (REP),” Developpement-durable.gouv, 2014. [Online]. http://www.developpement-durable.gouv.fr/Vehicules-Hors-d-Usage-VHU,12759.html [Accessed: 09-Dec-2016]

  2. DIRECTIVE 2002/96/CE DU PARLEMENT EUROPÉEN ET DU CONSEIL (2003) du 27 janvier relative aux déchets d’équipements électriques et électroniques (DEEE) J Off l’Union Eur:24–38

  3. Marques AC, Cabrera Marrero J-M, C de Fraga Malfatti (2013) A review of the recycling of non-metallic fractions of printed circuit boards. Springerplus, vol 2, p 521

  4. Ademe (2016) Rapport annuel du registre des déchets d’equipements électriques et électroniques

  5. Hischier R, Wäger P, Gauglhofer J (2005) Does WEEE recycling make sense from an environmental perspective? Environ Impact Assess Rev 25(5):525–539

    Article  Google Scholar 

  6. Mar-Ortiz J, González-Velarde JL, Adenso-Díaz B (2011) Designing routes for WEEE collection: the vehicle routing problem with split loads and date windows. J Heuristics 19(2):103–127

    Article  Google Scholar 

  7. Zoeteman BCJ, Krikke HR, Venselaar J (2009) Handling WEEE waste flows: on the effectiveness of producer responsibility in a globalizing world. Int J Adv Manuf Technol 47(5–8):415–436

    Google Scholar 

  8. Veenstra A, Wang C, Fan W, Ru Y (2009) An analysis of E-waste flows in China. Int J Adv Manuf Technol 47(5–8):449–459

    Google Scholar 

  9. Streicher-Porte M, Bader H-P, Scheidegger R, Kytzia S (2007) Material flow and economic analysis as a suitable tool for system analysis under the constraints of poor data availability and quality in emerging economies. Clean Technol Environ Policy 9(4):325–345

    Article  Google Scholar 

  10. Kang H-Y, Schoenung JM (2006) Economic analysis of electronic waste recycling: modeling the cost and revenue of a materials recovery facility in California. Environ Sci Technol 40(5):1672–1680

    Article  Google Scholar 

  11. Georgiadis P, Besiou M (2009) Environmental and economical sustainability of WEEE closed-loop supply chains with recycling: a system dynamics analysis. Int J Adv Manuf Technol 47(5–8):475–493

    Google Scholar 

  12. Renteria A, Alvarez E, Perez J, Pozo D (2010) A methodology to optimize the recycling process of WEEE: case of television sets and monitors. Int J Adv Manuf Technol 54(5–8):789–800

    Google Scholar 

  13. Schlummer M, Gruber L, Mäurer A, Wolz G, van Eldik R (2007) Characterisation of polymer fractions from waste electrical and electronic equipment (WEEE) and implications for waste management. Chemosphere 67(9):1866–1876

    Article  Google Scholar 

  14. Maris E, Botané P, Wavrer P, Froelich D (2015) Characterizing plastics originating from WEEE: a case study in France. Miner Eng 76:28–37

    Article  Google Scholar 

  15. Stevens GC, Goosey M (2008) Materials used in manufacturing electrical and electronic products. In: Electronic Waste Management. Royal Society of Chemistry, Cambridge, pp 40–74

    Chapter  Google Scholar 

  16. Chancerel P, Rotter S (2009) Recycling-oriented characterization of small waste electrical and electronic equipment. Waste Manag 29(8):2336–2352

    Article  Google Scholar 

  17. Lambert AJD (2003) Disassembly sequencing: a survey. Int J Prod Res 41(16):3721–3759

    Article  MATH  Google Scholar 

  18. Penev KD, de Ron AJ (1996) Determination of a disassembly strategy. Int J Prod Res 34(2):495–506

    Article  MATH  Google Scholar 

  19. Das S, Yedlarajiah P, Narendra R, Sanchoy K, Das P, Yedlarajiah, Narendra R (2000) An approach for estimating the end-of-life product disassembly effort and cost. Int J Prod Res 38(3):657–673

    Article  MATH  Google Scholar 

  20. Ma Y-S, Jun H-B, Kim H-W, Lee D-H (2011) Disassembly process planning algorithms for end-of-life product recovery and environmentally conscious disposal. Int J Prod Res 49(23):7007–7027

    Article  Google Scholar 

  21. Han HJ, Yu JM, Lee DH (2013) Mathematical model and solution algorithms for selective disassembly sequencing with multiple target components and sequence-dependent setups. Int J Prod Res 51(16):4997–5010

    Article  Google Scholar 

  22. Tsai W, Hung S (2009) Treatment and recycling system optimisation with activity-based costing in WEEE reverse logistics management: an environmental supply chain perspective. Int J Prod Res 47(19):5391–5420

    Article  MATH  Google Scholar 

  23. González B, Adenso-Díaz B (2005) A bill of materials-based approach for end-of-life decision making in design for the environment. Int J Prod Res 43(10):2071–2099

    Article  MATH  Google Scholar 

  24. Willems B, Dewulf W, Duflou JR (2006) Can large-scale disassembly be profitable? A linear programming approach to quantifying the turning point to make disassembly economically viable. Int J Prod Res 44(6):1125–1146

    Article  MATH  Google Scholar 

  25. de Ron A, Penev K (1995) Disassembly and recycling of electronic consumer products: an overview. Technovation 15(6):363–374

    Article  Google Scholar 

  26. Bream CE, Hornsby PR (2001) Comminuted thermoset recyclate as a reinforcing Part I Characterisation of recyclate feedstocks. J Mater Sci 36:2965–2975

    Article  Google Scholar 

  27. Bream C, Hornsby P (2000) Structure development in thermoset recyclate-filled polypropylene composites. Polym Compos 21(3):417–435

    Article  Google Scholar 

  28. Bream CE, Hornsby PR (2001) Comminuted thermoset recyclate as a reinforcing filler for thermoplastics—part II: structure-property effects in polypropylene compositions. J Mater Sci 36:2977–2990

    Article  Google Scholar 

  29. Gröning M, Eriksson H, Hakkarainen M, Albertsson AC (2006) Phenolic prepreg waste as functional filler with antioxidant effect in polypropylene and polyamide-6. Polym Degrad Stab 91(8):1815–1823

    Article  Google Scholar 

  30. Dilhan M, Kalyon M, Hallouch, Fares N (1984) Recycling of thermosets as fillers. ANTEC 84:640–642

  31. Cavalcante AP, Canto LB (2012) Use of industrial waste based on phenolic resin as filler for polypropylene. Polimeros 22(3):245–252

    Google Scholar 

  32. Chiang W-Y, Wu W-C, Pukánszky B (1994) Modification of polypropylene, blending with resole type phenol-formaldehyde resins. Eur Polym J 30(5):573–580

    Article  Google Scholar 

  33. Cui L, Wang S, Zhang Y, Zhang Y (2007) Dynamically cured polypropylene/Novolac blends compatibilized with maleic anhydride-g-polypropylene. J Appl Polym Sci 104(5):3337–3346

    Article  Google Scholar 

  34. Fu S-Y, Feng X-Q, Lauke B, Mai Y-W (2008) Effects of particle size, particle/matrix interface adhesion and particle loading on mechanical properties of particulate–polymer composites. Compos Part B Eng 39(6):933–961

    Article  Google Scholar 

  35. Karger-Kocsis J (1995) Polypropylene: Structure, blends and composites

  36. Móczó J, Pukánszky B (2008) Polymer micro and nanocomposites: structure, interactions, properties. J Ind Eng Chem 14(5):535–563

    Article  Google Scholar 

  37. Waterman NA, Trubshaw R, Pye AM (1978) Filled thermoplastic materials part I: fillers and compounding. Mater Eng Appl. 1:74–79

    Google Scholar 

  38. Costa L, Rossi L, Di Montelera G, Camino ED, Weil, Pearce EM (1998) Flame-retardant properties of phenol—formaldehyde-type resins and triphenyl phosphate in styrene—acrylonitrile copolymers. J Appl Polym Sci 68:1067–1076

    Article  Google Scholar 

  39. Seo K, Kim J, Bae J-Y (2006) Towards the development of thermally latent novolac-based char formers for ABS resins. Polym Degrad Stab 91(7):1513–1521

    Article  Google Scholar 

  40. Hu X, Guo Y, Chen L, Wang X, Li L, Wang Y (2012) A novel polymeric intumescent flame retardant: synthesis, thermal degradation mechanism and application in ABS copolymer. Polym Degrad Stab 97(9):1772–1778

    Article  Google Scholar 

  41. Lee K, Yoon K, Kim J, Bae J, Yang J, Hong S (2003) Effect of novolac phenol and oligomeric aryl phosphate mixtures on flame retardance enhancement of ABS. Polym Degrad Stab 81(1):173–179

    Article  Google Scholar 

  42. Levchik SV, Bright DA, Alessio GR, Dashevsky S (2002) Synergistic action between aryl phosphates and phenolic resin in PBT. Polym Degrad Stab 77(2):267–272

    Article  Google Scholar 

  43. Perrin D, Guillermain C, Bergeret A, Lopez-Cuesta J-M, Tersac G (2006) SMC composites waste management as reinforcing fillers in polypropylene by combination of mechanical and chemical recycling processes. J Mater Sci. 41(12):3593–3602

    Article  Google Scholar 

  44. Palmer J, Ghita OR, Savage L, Evans KE (2009) Successful closed-loop recycling of thermoset composites. Compos Part A Appl Sci Manuf 40(4):490–498

    Article  Google Scholar 

  45. Kouparitsas CE, Kartalis CN, Varelidis PC, Tsenoglou CJ, Papaspyrides CD (2002) Recycling of the fibrous fraction of reinforced thermoset composites. Polym Compos 23(4):682–689

    Article  Google Scholar 

  46. Bruyère D, Simon S, Haas H, Conte T, Menad N-E (2016) Cryogenic ball milling: a key for elemental analysis of plastic-rich automotive shedder residue. Powder Technol 294:454–462

    Article  Google Scholar 

  47. Gente V, La Marca F, Lucci F, Massacci P, Pani E (2004) Cryo-comminution of plastic waste. Waste Manag 24(7):663–672

    Article  Google Scholar 

  48. Schmidt J, Plata M, Tröger S, Peukert W (2012) Production of polymer particles below 5 μm by wet grinding. Powder Technol 228:84–90

    Article  Google Scholar 

  49. Hedayati M, Salehi M, Bagheri R, Panjepour M, Maghzian A (2011) Ball milling preparation and characterization of poly (ether ether ketone)/surface modified silica nanocomposite. Powder Technol 207(1):296–303

    Article  Google Scholar 

  50. Molina-Boisseau S, Le Bolay N, Pons MN (2002) Fragmentation mechanism of poly(vinyl acetate) particles during size reduction in a vibrated bead mill. Powder Technol 123(2–3):282–291

    Article  Google Scholar 

  51. Molina-Boisseau S, Le Bolay N (2000) Size reduction of polystyrene in a shaker bead mill—kinetic aspects. Chem Eng J 79(1):31–39

    Article  Google Scholar 

  52. Jonna S, Lyons J (2005) Processing and properties of cryogenically milled post-consumer mixed plastic waste. Polym Test 24(4):428–434

    Article  Google Scholar 

  53. Molina-Boisseau S, Bolay NL (2002) Characterisation of the physicochemical properties of polymers ground in a vibrated bead mill. Powder Technol 128(2):99–106

    Article  Google Scholar 

  54. Kang H-Y, Schoenung JM (2005) Electronic waste recycling: a review of U.S. infrastructure and technology options. Resour Conserv Recycl 45(4):368–400

    Article  Google Scholar 

  55. PlasticsEurope (2014) Automobile, Avec les plastiques, le monde bouge

  56. Ausset S (2013) Procédé de recyclage de mélanges ABS-PC issus de déchets d’equipements électriques et électroniques (DEEE), vol 1. Université Bordeaux, Bordeaux

    Google Scholar 

  57. “DIRECTIVE 2002/95/CE DU PARLEMENT EUROPÉEN ET DU CONSEIL (2003) du 27 janvier 2003 relative à la limitation de l’utilisation de certaines substances dangereuses dans les équipements électriques et électroniques. J Off l’Union Eur

  58. Ma C, Yu J, Wang B, Song Z, Xiang J, Hu S, Su S, Sun L (2016) Chemical recycling of brominated flame retarded plastics from e-waste for clean fuels production: A review. Renew Sustain Energy Rev 61:433–450

    Article  Google Scholar 

  59. Chevalier M (1991) Phénoplastes ou phénols-formols. Tech. l’ingénieur

  60. Miller R, Mark H, Gaylord N (1966) Phenolic resins. Encycl Polym Sci Technol 7(11):322–368

    Google Scholar 

  61. Tinke AP, Carnicer A, Govoreanu R, Scheltjens G, Lauwerysen L, Mertens N, Vanhoutte K, Brewster ME (2008) Particle shape and orientation in laser diffraction and static image analysis size distribution analysis of micrometer sized rectangular particles. Powder Technol.186(2):154–167

    Article  Google Scholar 

  62. Bernardeau F, Perrin D, Caro-Bretelle A-S, Ienny P (2017) Valorization of waste thermoset material as a filler in thermoplastic: mechanical properties of phenolic molding compound waste filled PP composites. J Appl Polym Sci (accepted publication in progress, Oct. 2017)

Download references

Acknowledgements

The authors wish to thank the companies APR2 and ENEDIS for their financial support to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Didier Perrin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1883 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bernardeau, F., Perrin, D., Caro-Bretelle, AS. et al. Development of a recycling solution for waste thermoset material: waste source study, comminution scheme and filler characterization. J Mater Cycles Waste Manag 20, 1320–1336 (2018). https://doi.org/10.1007/s10163-017-0698-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-017-0698-x

Keywords

Navigation