Journal of Material Cycles and Waste Management

, Volume 20, Issue 2, pp 1286–1298 | Cite as

Life-cycle assessment of solid-waste management in city of Zagreb, Croatia

ORIGINAL ARTICLE
  • 98 Downloads

Abstract

In terms of improvement of the existing municipal solid-waste management system in city of Zagreb (Croatia) in a line with legal requirements and its shift towards circular economy, two scenarios were investigated. Life-cycle assessment (LCA) methodology was used to compare the existing municipal solid-waste management system mainly relay on landfilling of waste with expanded system combining mechanical separation of recyclable fractions of mixed municipal waste (MMW), anaerobic digestion of organic fraction, and thermal treatment of residual waste. The waste management-dedicated LCA software EASETECH was used for the assessment of the scenarios in accordance with the EDIP 1997 LCA method. Improved solid-waste management scenario showed superior results in terms of increased recycling rate of valuable materials and overall environmental performance. Because of introduction of convenient mechanical, biological, and thermal treatment technologies, it enables fulfilment of legal obligation concerning waste recycling targets and landfilling of waste.

Keywords

LCA Bio-waste Mixed municipal waste Landfill Composting 

References

  1. 1.
    Laurent A, Bakas I, Clavereul J, Bernstad A, Niero M, Gentile E, Hauschild MZ, Chrinstiansen TH (2014) Review of LCA studies of solid waste management systems—Part I: lessons learned and perspectives. Waste Manage 34(3):573–588CrossRefGoogle Scholar
  2. 2.
    Eurostat (2015): Municipal waste landfilled, incinerated, recycled and composted in the EU-27, pp 1995–2015Google Scholar
  3. 3.
    European Commission (1999) Council directive 1999/31/EC on the landfill of waste. Off J Eur Commun L 182:14–23Google Scholar
  4. 4.
    European Commission (2008) Council directive 2008/98/EC on waste and repealing certain Directives. Off J Eur Commun L 312:99–118Google Scholar
  5. 5.
    Croatian Environmental and Nature Protection Agency (2016) Report on municipal waste for Croatia. Croatian Environmental and Nature Agency, ZagrebGoogle Scholar
  6. 6.
    Barton JR, Dalley D, Patel VS (1996) Life cycle assessment for waste management. Waste Manag 16(1–3):35–50CrossRefGoogle Scholar
  7. 7.
    Ekvall T, Assefa G, Bjorklund A, Eriksson O, Finnveden G (2007) What life-cycle assessment does and does not do in assessments of waste management. Waste Manag 27(8):989–996CrossRefGoogle Scholar
  8. 8.
    Finneveden G, Ekvall T (1998) Life-cycle assessment as a decision-support tool – the case of recycling versus incineration of paper. Resour Conserv Recycl 24(3–4):235–256CrossRefGoogle Scholar
  9. 9.
    Saner D, Walser T, Vadenbo CO (2012) End-of-life and waste management in life cycle assessment-Zurich, 6 December 2011. Int J Life Cycle Ass 17(4):504–510CrossRefGoogle Scholar
  10. 10.
    Blengini GA, Fantoni M, Busto M, Genon G, Zanetti MC (2012) Participator approach, acceptability and transparency of waste management LCAs: case studies of Torino and Cuneo. Waste Manag 32(9):1712–1721CrossRefGoogle Scholar
  11. 11.
    Di Maria F, Micale C (2014) A holistic life cycle analysis of waste management scenarios at increasing source segregation intensity: the case of and Italian urban area. Waste Manag 34(11):2383–2392CrossRefGoogle Scholar
  12. 12.
    Di Maria F, Sordi A, Micale C (2013) Experimental and life cycle assessment analysis of gas emission from mechanically-biologically pretreated waste in a landfill with energy recovery. Waste Manag 33(11):2557–2567CrossRefGoogle Scholar
  13. 13.
    Koci V, Trecakova T (2011) Mixed municipal waste management in the Czech Republic from the point of view of the LCA method. Int J Life Cycle Ass 16(2):113–124CrossRefGoogle Scholar
  14. 14.
    Blengini GA (2008) Using LCA to evaluate impacts and resources conservation potential of composting: a case study of the Asti district in Italy. Resour Conserv Recycl 52(12):1373–1381CrossRefGoogle Scholar
  15. 15.
    Lunde S, Peters GM (2005) Life cycle assessment of food waste management options. J Clean Prod 13(3):275–286CrossRefGoogle Scholar
  16. 16.
    Montejo C, Tonini D, Márquez M, Astrup TF (2013) Mechanical-biological treatment: Performance and potentials. An LCA of 8 MBT plants including waste characterization. J Environ Manag 128:661–673CrossRefGoogle Scholar
  17. 17.
    Finnveden G, Johansson J, Lind P, Moberg A (2009) Life cycle assessment of energy from solid waste—part 1: general methodology and results. J Clean Prod 13(3):213–229CrossRefGoogle Scholar
  18. 18.
    Ferreira S, Cabral M, De Jaeger S, Da Cruz N, Simoes P, Marques RC (2015) Life cycle assessment and valuation of the packaging waste recycling system in Belgium. J Mater Cycles Waste Manag 19(1):144–154CrossRefGoogle Scholar
  19. 19.
    Kaplan PO, Decarolis J, Thorneloe S (2009) Is it better to burn or burry waste for clean electricity generation? Environ Sci Technol 43(6):1711–1717CrossRefGoogle Scholar
  20. 20.
    Chaya W, Gheewala S (2007) Life cycle assessment of MSW-to-energy schemes in Thailand. J Clean Prod 15(15):1463–1468CrossRefGoogle Scholar
  21. 21.
    Otoma S, Diaz R (2015) Life-cycle green house gas emissions and economic analysis of alternative treatments of sloid waste from city markets in Vietnam. J Mater Cycles Waste Manag 13(1):70–87Google Scholar
  22. 22.
    Abduli MA, Naghib A, Yonesi M, Akbari A (2011) Life cycle assessment (LCA) of solid waste management strategies in Tehran: landfill and composting plus landfill. Environ Monitor Assess 178(1–4):487–498CrossRefGoogle Scholar
  23. 23.
    Assamoi B, Lawryshyn Y (2012) The environmental comparison of landfilling vs incineration of MSW accounting for waste diverstion. Waste Manag 32(5):1019–1030CrossRefGoogle Scholar
  24. 24.
    Zhao Y, Wang HT, Lu WJ, Damgaard A, Christensen TH (2009) Life-cycle assessment of the municipal solid waste management system in Hangzhou, China. Waste Manag Res 27(4):399–406CrossRefGoogle Scholar
  25. 25.
    Antonopoulos I, Karagiannidis A, Tsarsarelis T, Perkoulidis G (2013) Applying waste management scenarios in the Peloponnese region in Greece: a critical analysis in the frame of life cycle assessment. Environ Sci Poll Res 20(4):2499–2511CrossRefGoogle Scholar
  26. 26.
    Laurent A, Clavereul J, Bernstad A, Bakas I, Niero M, Gentile E, Chrinstiansen TH, Hauschild MZ (2014) Review of LCA studies of solid waste management systems—part II: methodological guidance for a better practice. Waste Manag 34(3):589–606CrossRefGoogle Scholar
  27. 27.
    ISO 14040 (2006) Environmental management-life cycle assessment-requirements and guidelines, 1st edn. International Standards Organization, GenevaGoogle Scholar
  28. 28.
    ISO 14040 (2006) Environmental management-life cycle assessment-principles and framework, 2nd edn. International Standards Organization, GenevaGoogle Scholar
  29. 29.
    Clavreul J, Baumeister H, Christensen TH, Damgaard A (2014) An environmental assessment system for environmental technologies. Environ Model Softw 60:18–30CrossRefGoogle Scholar
  30. 30.
    Ribic B, Voca N, Ilakovac B (2016) Concept of sustainable waste management in the City of Zagreb: towards the implementation of circular economy approach. J Air Waste Manag Ass 67(2):241–259CrossRefGoogle Scholar
  31. 31.
    Boldrin A, Christensen TH (2010) Seasonal generation and composition of garden waste in Aarhus (Denmark). Waste Manag 30(4):551–557CrossRefGoogle Scholar
  32. 32.
    Eisted R, Christensen TH (2011) Characterization of household waste in Greenland. Waste Manag 31(7):1461–1466CrossRefGoogle Scholar
  33. 33.
    Riber C, Petersen C, Christensen TH (2009) Chemical composition of material fractions in Danish household waste. Waste Manag 29(4):1251–1257CrossRefGoogle Scholar
  34. 34.
    Larsen AW, Merrild H, Christensen TH (2009) Recycling of glass: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):754–762CrossRefGoogle Scholar
  35. 35.
    Manfredi S, Christensen TS (2009) Environmental assessment of solid waste landfill technologies by means of LCA-modeling. Waste Manag 29(12):32–43CrossRefGoogle Scholar
  36. 36.
    Finnveden G, Hauschild MZ, Ekvall T, Guine J, Heijungs R, Hellweg S, Koehler A, Pennington D, Suh S (2009) Recent developments in life cycle assessment. J Environ Manag 91(1):1–21CrossRefGoogle Scholar
  37. 37.
    Boldrin A, Neidel TL, Damgaard A, Bhander GS, Moller J, Christensen TH (2011) Modelling of environmental impacts from biological treatment of organic municipal waste in EASEWASTE. Waste Manag 31(4):619–630CrossRefGoogle Scholar
  38. 38.
    Riber C, Bhander GS, Christensen TH (2008) Environmental assessment of waste incineration in a life-cycle-perspective (EASEWASTE). Waste Manag Res 26(1):96–103CrossRefGoogle Scholar
  39. 39.
    Merrild H, Damgaard A, Christensen TS (2008) Life cycle assessment of waste paper management: the importance of technology data system boundaries in assessing recycling and incineration. Resour Conserv Recycl 52(12):1391–1398CrossRefGoogle Scholar
  40. 40.
    Larsen AW, Merrild H, Christensen TS (2009) Recycling of glass: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):754–762CrossRefGoogle Scholar
  41. 41.
    Astrup T, Fruergaard T, Christensen TS (2009) Recycling of plastic: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):763–772CrossRefGoogle Scholar
  42. 42.
    Damgaard A, Larsen AW, Christensen TS (2009) Recycling of metals: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):773–780CrossRefGoogle Scholar
  43. 43.
    Wenzel H, Hauschild MZ, Alting L (1997) Environmental assessment of products, methodology, tools and case studies in product development, vol 1. Chapman & Hall, LondonGoogle Scholar
  44. 44.
    Christensen TH, Gentil E, Boldrin A, Larsen AW, Weidema BP, Hauschild M (2009) C balance, carbon dioxide emissions and global warming potentials in LCA modelling of waste management systems. Waste Manag Res 27(8):696–706CrossRefGoogle Scholar
  45. 45.
    Larsen AW, Vrgoc M, Christensen TH (2009) Diesel consumption in waste collection and transport and its environmental significance. Waste Manag Res 27(7):652–659CrossRefGoogle Scholar
  46. 46.
    Manfredi S, Tonini D, Christensen TH (2011) Environmental assessment of different management options for individual waste fractions by means of life cycle assessment modelling. Resour Conserv Recycl 55(11):995–1004CrossRefGoogle Scholar
  47. 47.
    Merrild H, Damgaard A, Christensen TH (2009) Recycling of paper: accounting of greenhouse gases and global warming contributions. Waste Manag Res 27(8):746–753CrossRefGoogle Scholar
  48. 48.
    Merrild H, Larsen AW, Christensen TH (2012) Assessing recycling versus incineration of key materials in municipal waste: the importance of efficient energy recovery and transport distances. Waste Manag 32(5):1009–1018CrossRefGoogle Scholar
  49. 49.
    Polprasert C (1989) Organic waste recycling. Wiley, ChesterGoogle Scholar
  50. 50.
    Clavreul J, Guyonnet D, Christensen TH (2012) Quantifying uncertainty in LCA-modeling waste management systems. Waste Manag 32(12):2482–2495CrossRefGoogle Scholar
  51. 51.
    Slagstad H, Brattebø H (2013) Influence of assumptions about household waste composition in waste management LCAs. Waste Manag 33(1):212–219CrossRefGoogle Scholar
  52. 52.
    Schmidt S, Pahl-Wostl C (2007) Modeling biowaste flows for life-cycle assessment. J Ind Ecol 11(1):181–199CrossRefGoogle Scholar
  53. 53.
    Croatian Parliament (2015) Regulation on landfilling of waste, categories and conditions for waste. Official Gazette of the Republic of Croatia, p 114Google Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Zagreb HoldingZagrebCroatia
  2. 2.Faculty of AgricultureUniversity of ZagrebZagrebCroatia
  3. 3.Medjimurje CountyCakovecCroatia

Personalised recommendations