Advertisement

Journal of Material Cycles and Waste Management

, Volume 20, Issue 2, pp 1355–1363 | Cite as

Remarks on four novel landfill mining case studies in Estonia and Sweden

  • Marika Hogland
  • Dace Āriņa
  • Mait Kriipsalu
  • Yahya Jani
  • Fabio Kaczala
  • André Luís de Sá Salomão
  • Kaja Orupõld
  • Kaur-Mikk Pehme
  • Vita Rudoviča
  • Gintaras Denafas
  • Juris Burlakovs
  • Zane Vincēviča-Gaile
  • William Hogland
REGIONAL CASE STUDY
  • 231 Downloads

Abstract

In common sense, a landfill is a place where the life cycle of products ends. Landfill mining (LFM) mostly deals with former dumpsites and derived material may have a significant importance for the circular economy. Deliverables of recently applied LFM projects in Sweden and Estonia have revealed the potential and problems for material recovery. There are 75–100 thousand old landfills and dumps in the Baltic Sea Region, and they pose environmental risks to soil, water and air by pollution released from leachate and greenhouse gas emissions. Excavation of landfills is potential solution for solving these problems, and at the same time, there are perspectives to recover valuable lands and materials, save expenses for final coverage of the landfills and aftercare control. The research project “Closing the Life Cycle of Landfills—Landfill Mining in the Baltic Sea Region for Future” included investigation at four case studies in Estonia and Sweden: Kudjape, Torma, Högbytorp and Vika landfills. Added value of this research project is characterization of waste fine fraction material, determination of concentration for most critical and rare earth elements. The main results showed that both, coarse and fine, fractions of waste might have certain opportunities of recovery.

Keywords

Landfill mining Recovery of waste Metals Environmental remediation Circular economy 

Notes

Acknowledgements

The Swedish Institute gave financial support to the most important project “Closing the Life Cycle of Landfills—Landfill Mining in the Baltic Sea Region for Future” related to the beyond the zero waste concept. The European Cohesion Fund and the Estonian Environmental Investment Centre contributed with funds to an excavation project. Estonian Basic Financing project 8P170055MIVE “The implementation of the circular economy principles on utilization of previously deposited waste as resources and energy; and the use of stabilized fine fraction as methane degradation layer to minimize emissions of greenhouse gases” assisted in research activities.

References

  1. 1.
    Kollikkathara N, Feng H, Stern E (2009) A purview of waste management evolution: special emphasis on USA. Waste Manage 29:974–985.  https://doi.org/10.1016/j.wasman.2008.06.032 CrossRefGoogle Scholar
  2. 2.
    Krook J, Svensson N, Eklund M (2012) Landfill mining: a critical review of two decades of research. Waste Manage 32:513–520.  https://doi.org/10.1016/j.wasman.2011.10.015 CrossRefGoogle Scholar
  3. 3.
    Zhao Y, Song L, Huang R, Song L, Li X (2007) Recycling of aged refuse from a closed landfill. Waste Manage Res 25:130–138.  https://doi.org/10.1177/0734242X07074053 CrossRefGoogle Scholar
  4. 4.
    Hogland W (2002) Remediation of an old landfill: soil analysis, leachate quality and gas production. Environ Sci Pollut Res Int 1:49–54.  https://doi.org/10.1007/BF02987426 CrossRefGoogle Scholar
  5. 5.
    Burlakovs J, Kriipsalu M, Arina D, Kaczala F, Shmarin S, Denafas G, Hogland W (2013) Former dump sites and the landfill mining perspectives in Baltic countries and Sweden: the status. 13th SGEM GeoConf Proc Sci Technol Geol Explor Min 1:485–492.  https://doi.org/10.5593/SGEM2013/BA1.V1/S03.035 Google Scholar
  6. 6.
    Demesouka OE, Vavatsikos AP, Anagnostopoulos KP (2013) Suitability analysis for siting MSW landfills and its multicriteria spatial decision support system: method, implementation and case study. Waste Manage 33(5):1190–1206.  https://doi.org/10.1016/j.wasman.2013.01.030 CrossRefGoogle Scholar
  7. 7.
    Weng YC, Furuichi T, Ishii K (2013) Proposal of an integrated evaluation approach on final disposal sites with regard to future reclamation—a case study of Moereruma Park, Sapporo city. J Jpn Soc Civ Eng Ser G 69:313–320 (In Japanese) Google Scholar
  8. 8.
    Johansson N, Krook J, Eklund M (2012) Transforming dumps into gold mines. Experiences from Swedish case studies. Environ Innov Soc Transit 5:33–48.  https://doi.org/10.1016/j.eist.2012.10.004 CrossRefGoogle Scholar
  9. 9.
    Hogland W, Marques M, Nimmermark S (2004) Landfill mining and waste characterization: a strategy for remediation of contaminated areas. J Mater Cycles Waste Manage 6:119–124.  https://doi.org/10.1007/s10163-003-0110-x CrossRefGoogle Scholar
  10. 10.
    Mulligan CN, Yong RN, Gibbs BF (2001) Heavy metal removal from sediments by biosurfactants. J Hazard Mater 85:111–125.  https://doi.org/10.1016/S0304-3894(01)00224-2 CrossRefGoogle Scholar
  11. 11.
    Ghirişan AL, Drăgan S, Pop A, Simihăian M, Miclăuş V (2007) Heavy metal removal and neutralization of acid mine waste water—kinetic study. Can J Chem Eng 85(6):900–905.  https://doi.org/10.1002/cjce.5450850611 CrossRefGoogle Scholar
  12. 12.
    the hague center for strategic studies (2010) scarcity of minerals. A strategic security issue. https://www.hcss.nl/reports/scarcity-of-minerals/14/. Accessed 17 June 2016
  13. 13.
    Stenis J, Hogland W (2011) Optimization of mining by application of the equality principle. Resour Policy 36(3):285–292.  https://doi.org/10.1016/j.resourpol.2011.05.004 CrossRefGoogle Scholar
  14. 14.
    Arafat HA, Jijakli K (2013) Modeling and comparative assessment of municipal solid waste gasification for energy production. Waste Manage 33(8):1704–1713.  https://doi.org/10.1016/j.wasman.2013.04.008 CrossRefGoogle Scholar
  15. 15.
    Salerni EL (1995) Landfill Reclamation Manual. Reclaim-95 Landfill Mining Conference, September 28–29, 1995, Resource Recovery Report, SWANA Landfill Reclamation Task GroupGoogle Scholar
  16. 16.
    Joseph K, Nasgendran R, Thanasekaran K, Visvanathan C, Hogland W, Kathikeyan OP, Moorthy NN (2008) Dumpsite rehabilitation manual, Centre for Environmental Studies, Anna University, Chennai–600 025 India. https://www.elaw.org/system/files/Dumpsite%20Rehabilitation%20Manual.pdf. Accessed 17 June 2016
  17. 17.
    Hull RM, Krogmann U, Strom PF (2005) Composition and characteristics of excavated materials from a New Jersey landfill. J Environ Eng 3:478–490.  https://doi.org/10.1061/(ASCE)0733-9372(2005)131:3(478) CrossRefGoogle Scholar
  18. 18.
    Goeschl R (2012) System, technology and experience of 17Mt of landfill mining projects. Conference paper at SUM2012 Symposium on Urban Mining. ItalyGoogle Scholar
  19. 19.
    Quaghebeur M, Laenen B, Geysen D, Nielsen P, Pontikes Y, Van Gerven T, Spooren J (2012) Characterization of landfilled materials: screening of the enhanced landfill mining potential. J Clean Prod 55:72–83.  https://doi.org/10.1016/j.jclepro.2012.06.012 CrossRefGoogle Scholar
  20. 20.
    Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste. OJEC 16.7.1999Google Scholar
  21. 21.
    Bhatnagar A, Kaczala F, Hogland W, Marques M, Paraskeva CA, Papadakis VA, Sillanpää M (2013) Valorization of solid waste products from olive oil industry as potential adsorbents for water pollution control-a review. Environ Sci Pollut Res Int 21:268–298.  https://doi.org/10.1007/s11356-013-2135-6 CrossRefGoogle Scholar
  22. 22.
    Kriipsalu M, Marques M, Hogland W, Nammari DR (2008) Fate of polycyclic aromatic hydrocarbons during composting of oily sludge. Environ Technol 29:43–53.  https://doi.org/10.1080/09593330802008735 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK, part of Springer Nature 2017

Authors and Affiliations

  • Marika Hogland
    • 1
  • Dace Āriņa
    • 2
  • Mait Kriipsalu
    • 3
  • Yahya Jani
    • 1
  • Fabio Kaczala
    • 1
  • André Luís de Sá Salomão
    • 4
  • Kaja Orupõld
    • 3
  • Kaur-Mikk Pehme
    • 3
  • Vita Rudoviča
    • 5
  • Gintaras Denafas
    • 6
  • Juris Burlakovs
    • 1
  • Zane Vincēviča-Gaile
    • 7
  • William Hogland
    • 1
  1. 1.Department of Biology and Environmental ScienceLinnaeus UniversityKalmarSweden
  2. 2.Institute of Physical EnergeticsRigaLatvia
  3. 3.Department of Water ManagementEstonian University of Life SciencesTartuEstonia
  4. 4.Rio De Janeiro State UniversityMaracanãBrazil
  5. 5.Faculty of ChemistryUniversity of LatviaRigaLatvia
  6. 6.Department of Environmental TechnologyKaunas Technological UniversityKaunasLithuania
  7. 7.Department of Environmental ScienceUniversity of LatviaRigaLatvia

Personalised recommendations