Release characteristics and control of hydrogen sulfide during thermal drying of municipal wastewater sludge

  • Min Wu
  • Zhiyuan Wang
  • Jie Zhou
  • Mingxing Niu
  • Xiaolin Jiang
  • Yaoling Lv
  • Qianqian Xiao
  • Gongxia Li
  • Yayi Wang


Hydrogen sulfide (H2S) is the most predominant malodorous gas released during the thermal drying of municipal wastewater sludge. Experiment using a laboratory-scale tube furnace was conducted to determine the characteristics of H2S release and the changes of sludge moisture content. The addition of calcium oxide (CaO) in the original sludge was also tested and evaluated for its inhibitory effect on the H2S release. The results showed that the amount of H2S released increases with the increase of temperature in the tested range of temperature from 80 to 280 °C. The critical temperature range defined as the turn point of temperature at which the H2S or other odorous gases release starts to drastically increase was determined to be 200–240 °C. It was found that the drying process could be divided into two stages according to the changes of H2S release speed and the corresponding moisture content, and the majority of H2S release was detected in the second stage. The reduction of element sulfur in sludge was approximately proportional to the H2S released in the temperature range from 80 to 280 °C. The addition of CaO in the sludge could significantly repress the release of H2S during thermal drying. This inhibitory effect was observed to last for the entire drying process and not be changed with the change of temperature.


Sludge treatment Thermal drying Odor Hydrogen sulfide 



This study was supported by the Major Science and Technology program for water pollution control and treatment (2010ZX07319-001-06).


  1. 1.
    Meng XZ, Venkatesan AK, Ni YL, Steele JC, Wu LL, Bignert A, Bergman A, Halden RU (2016) Organic contaminants in Chinese sewage sludge: a meta-analysis of the literature of the past 30 years. Environ Sci Technol 50:5454–5466. doi: 10.1021/acs.est.5b05583 CrossRefGoogle Scholar
  2. 2.
    Yang G, Zhang G, Wang H (2015) Current state of sludge production, management, treatment and disposal in China. Water Res 78:60–73. doi: 10.1016/j.watres.2015.04.002 CrossRefGoogle Scholar
  3. 3.
    Werle S, Wilk RK (2010) A review of methods for the thermal utilization of sewage sludge: the polish perspective. Renew Energy 35:1914–1919. doi: 10.1016/j.renene.2010.01.019 CrossRefGoogle Scholar
  4. 4.
    Sawai O, Nunoura T, Yamamoto K (2013) Supercritical water gasification of sewage sludge using bench-scale batch reactor: advantages and drawbacks. J Mater Cycles Waste Manag 16:82–92. doi: 10.1007/s10163-013-0144-7 CrossRefGoogle Scholar
  5. 5.
    Su L, Shi X, Guo G, Zhao A, Zhao Y (2013) Stabilization of sewage sludge in the presence of nanoscale zero-valent iron (nZVI): abatement of odor and improvement of biogas production. J Mater Cycles Waste Manag 15:461–468. doi: 10.1007/s10163-013-0150-9 CrossRefGoogle Scholar
  6. 6.
    Jin L, Zhang G, Tian H (2014) Current state of sewage treatment in China. Water Res 66:85–98. doi: 10.1016/j.watres.2014.08.014 CrossRefGoogle Scholar
  7. 7.
    Li B, Wang F, Chi Y, Yan J-H (2014) Study on optimal energy efficiency of a sludge drying-incineration combined system. J Mater Cycles Waste Manag 16:684–692. doi: 10.1007/s10163-014-0293-3 CrossRefGoogle Scholar
  8. 8.
    Kelessidis A, Stasinakis AS (2012) Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries. Waste Manag 32:1186–1195. doi: 10.1016/j.wasman.2012.01.012 CrossRefGoogle Scholar
  9. 9.
    Yuan H, Lu T, Zhao D, Huang H, Noriyuki K, Chen Y (2013) Influence of temperature on product distribution and biochar properties by municipal sludge pyrolysis. J Mater Cycles Waste Manag 15:357–361. doi: 10.1007/s10163-013-0126-9 CrossRefGoogle Scholar
  10. 10.
    Huang Y, Yu L, Wang R, Wu J, Takaoka M (2015) Pilot study of intense dewatering of urban sewage sludge. J Mater Cycles Waste Manag 19:88–101. doi: 10.1007/s10163-015-0387-6 CrossRefGoogle Scholar
  11. 11.
    Weng H, Dai Z, Ji Z, Gao C, Liu C (2015) Release and control of hydrogen sulfide during sludge thermal drying. J Hazard Mater 296:61–67. doi: 10.1016/j.jhazmat.2015.04.037 CrossRefGoogle Scholar
  12. 12.
    Liu W, Xu J, Liu J, Cao H, Huang XF, Li G (2015) Characteristics of ammonia emission during thermal drying of lime sludge for co-combustion in cement kilns. Environ Technol 36:226–236. doi: 10.1080/09593330.2014.942705 CrossRefGoogle Scholar
  13. 13.
    Vaxelaire J, Puiggali JR (2006) Analysis of the drying of residual sludge: from the experiment to the simulation of a belt dryer. Dry Technol 20:989–1008. doi: 10.1081/drt-120003773 CrossRefGoogle Scholar
  14. 14.
    Lowe P (2007) Developments in the thermal drying of sewage sludge. Water Environ J 9:306–316. doi: 10.1111/j.1747-6593.1995.tb00944.x CrossRefGoogle Scholar
  15. 15.
    Deng WY, Yan JH, Li XD, Wang F, Zhu XW, Lu SY, Cen KF (2009) Emission characteristics of volatile compounds during sludges drying process. J Hazard Mater 162:186–192. doi: 10.1016/j.jhazmat.2008.05.022 CrossRefGoogle Scholar
  16. 16.
    Weng H-X, Ji Z-Q, Chu Y, Cheng CQ, Zhang J-J (2011) Benzene series in sewage sludge from China and its release characteristics during drying process. Environ Earth Sci 65:561–569. doi: 10.1007/s12665-011-1100-2 CrossRefGoogle Scholar
  17. 17.
    Tian Y, Zhang J, Zuo W, Chen L, Cui Y, Tan T (2013) Nitrogen conversion in relation to NH3 and HCN during microwave pyrolysis of sewage sludge. Environ Earth Sci 47:3498–3505. doi: 10.1021/es304248j Google Scholar
  18. 18.
    Gostelow P, Parsons SA, Stuetz RM (2001) Odour measurements for sewage treatment works. Water Res 35:579–597. doi: 10.1016/S0043-1354(00)00313-4 CrossRefGoogle Scholar
  19. 19.
    Liu S, Wei M, Qiao Y, Yang Z, Gui B, Yu Y, Xu M (2015) Release of organic sulfur as sulfur-containing gases during low temperature pyrolysis of sewage sludge. Proc Combust Inst 35:2767–2775. doi: 10.1016/j.proci.2014.06.055 CrossRefGoogle Scholar
  20. 20.
    Liu H, Luo GQ, Hu HY, Zhang Q, Yang JK, Yao H (2012) Emission characteristics of nitrogen- and sulfur-containing odorous compounds during different sewage sludge chemical conditioning processes. J Hazard Mater 235–236:298–306. doi: 10.1016/j.jhazmat.2012.07.060 CrossRefGoogle Scholar
  21. 21.
    Godayol A, Alonso M, Besalu E, Sanchez JM, Antico E (2011) Odour-causing organic compounds in wastewater treatment plants: evaluation of headspace solid-phase microextraction as a concentration technique. J Chromatogr A 1218:4863–4868. doi: 10.1016/j.chroma.2011.02.017 CrossRefGoogle Scholar
  22. 22.
    He R, Xia FF, Bai Y, Wang J, Shen DS (2012) Mechanism of H2S removal during landfill stabilization in waste biocover soil, an alterative landfill cover. J Hazard Mater 217–218:67–75. doi: 10.1016/j.jhazmat.2012.02.061 CrossRefGoogle Scholar
  23. 23.
    Carrera-Chapela F, Donoso-Bravo A, Souto JA (2014) Modeling the odor generation in WWTP: an integrated approach review. Water Air Soil Pollut 225:1–15. doi: 10.1007/s11270-014-1932-y CrossRefGoogle Scholar
  24. 24.
    Liu H, Zhang Q, Hu H, Xiao R, Li A, Qiao Y, Yao H, Naruse I (2014) Dual role of conditioner CaO in product distributions and sulfur transformation during sewage sludge pyrolysis. Fuel 134:514–520. doi: 10.1016/j.fuel.2014.06.020 CrossRefGoogle Scholar
  25. 25.
    Liu H, Liu P, Hu H, Zhang Q, Wu Z, Yang J, Yao H (2014) Combined effects of Fenton peroxidation and CaO conditioning on sewage sludge thermal drying. Chemosphere 117:559–566. doi: 10.1016/j.chemosphere.2014.09.038 CrossRefGoogle Scholar
  26. 26.
    Ministry of Housing and Urban-Rural Development of People’s Republic China (2005) Determination method for municipal sludge in wastewater treatment plant. Standards Press of China, BeijingGoogle Scholar
  27. 27.
    Reiffenstein RJ, Hulbert WC, Roth SH (1992) Toxicology of hydrogen sulfide. Annu Rev Pharmacol 32:109–134. doi: 10.1146/ CrossRefGoogle Scholar
  28. 28.
    Logan TJ, Harrison BJ (1995) Physical characteristics of alkaline stabilized sewage sludge (N-Viro soil) and their effects on soil physical properties. J Environ Qual 24:153–164. doi: 10.2134/jeq1995.00472425002400010022x CrossRefGoogle Scholar
  29. 29.
    Hwang Y, Matsuo T, Hanaki K, Suzuki N (1995) Identification and quantification of sulfur and nitrogen containing odorous compounds in wastewater. Water Res 29:711–718. doi: 10.2134/jeq1995.00472425002400010022x CrossRefGoogle Scholar
  30. 30.
    North JM, Becker JG, Seagren EA, Ramirez M, Peot C (2008) Methods for quantifying lime incorporation into dewatered sludge. i: bench-scale evaluation. J Environ Eng 134:750–761. doi: 10.1061/(ASCE)0733-9372(2008)134:9(750) CrossRefGoogle Scholar
  31. 31.
    Zhou Q, Hu H, Liu Q, Shengwei Zhu A, Rui Z (2005) Effect of atmosphere on evolution of sulfur-containing gases during coal pyrolysis. Energ Fuel 19:892–897. doi: 10.1021/ef049773p CrossRefGoogle Scholar
  32. 32.
    Guan R, Li W, Li B (2003) Effects of Ca-based additives on desulfurization during coal pyrolysis. Fuel 82:1961–1966. doi: 10.1016/s0016-2361(03)00188-1 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Min Wu
    • 1
  • Zhiyuan Wang
    • 1
  • Jie Zhou
    • 2
  • Mingxing Niu
    • 1
  • Xiaolin Jiang
    • 3
  • Yaoling Lv
    • 4
  • Qianqian Xiao
    • 1
  • Gongxia Li
    • 1
  • Yayi Wang
    • 1
  1. 1.State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and EngineeringTongji UniversityShanghaiChina
  2. 2.Tongji Architectural Design (Group) Corporation LimitedShanghaiChina
  3. 3.Shanghai Pudong Veolia Water Corporation LimitedShanghaiChina
  4. 4.Shanghai Urban Construction Design and Research InstituteShanghaiChina

Personalised recommendations