Advertisement

The impact of pretreatment and inoculum to substrate ratio on methane potential of organic wastes from various origins

  • Hulya Civelek Yoruklu
  • Emre Korkmaz
  • Neslihan Manav Demir
  • Bestami Ozkaya
  • Ahmet Demir
ORIGINAL ARTICLE
  • 198 Downloads

Abstract

Biochemical methane potentials (BMP) of two different substrates from macroalgae (MA) and market place wastes (MPW) were investigated using anaerobic granulated sludge from food industry with different ratios of substrate to inoculum (S/X). The substrates were used as MA only, MPW only, MA–MPW mixture, pretreated MA, and pretreated MA–MPW mixture. Research involved investigation of the effects of parameters such as temperature (35, 45, and 55 °C), substrate to inoculum ratio (S/X = 0.5, 2.0, 4.0, and 6.0 as g VSsubstrate/g VSinoculum), and the type of pretreatment (by microwave, thermal, and ultrasonic) on BMP. BMP assays were performed for all substrates. The highest cumulative biogas production (and BMP) were obtained for MA only at an S/X ratio of 4.0 g VS/g VS as 357 Lbiogas/kg VS (197 L CH4/kg VS) and 33 Lbiogas/kg VS (17 L CH4/kg VS), respectively, at 35 and 55 °C. For pretreated substrates, the highest cumulative biogas production and BMP were observed as 287 Lbiogas/kg VS and 146 L CH4/kg VS using pretreated macroalgae at 35 °C. Results suggested that MA only and MA–MPW mixtures are suitable substrates for biogas production. It is also concluded that any type of pretreatment has adverse effects on biogas and methane productions.

Keywords

Anaerobic treatment Biochemical methane potential (BMP) Macroalgae Market place waste 

References

  1. 1.
    Cesaro A, Velten S, Belgiorno V, Kuchta K (2014) Enhanced anaerobic digestion by ultrasonic pretreatment of organic residues for energy production. J Clean Prod 74:119–124. doi: 10.1016/j.jclepro.2014.03.030 CrossRefGoogle Scholar
  2. 2.
    Koch K, Fernández YB, Drewes JE (2015) Influence of headspace flushing on methane production in biochemical methane potential (BMP) tests. Bioresour Technol 186:173–178. doi: 10.1016/j.biortech.2015.03.071 CrossRefGoogle Scholar
  3. 3.
    Pecorini I, Baldi F, Carnevale EA, Corti A (2016) Biochemical methane potential tests of different autoclaved and microwaved lignocellulosic organic fractions of municipal solid waste. Waste Manag 56:143–150. doi: 10.1016/j.wasman.2016.07.006 CrossRefGoogle Scholar
  4. 4.
    Naroznova I, Møller J, Scheutz C (2016) Characterisation of the biochemical methane potential (BMP) of individual material fractions in Danish source-separated organic household waste. Waste Manag 50:39–48. doi: 10.1016/j.wasman.2016.02.008 CrossRefGoogle Scholar
  5. 5.
    Pellera FM, Gidarakos E (2016) Effect of substrate to inoculum ratio and inoculum type on the biochemical methane potential of solid agroindustrial waste. J Environ Chem Eng 4:3217–3229. doi: 10.1016/j.jece.2016.05.026 CrossRefGoogle Scholar
  6. 6.
    Lopez VM, De la Cruz FB, Barlaz MA (2016) Chemical composition and methane potential of commercial food wastes. Waste Manag 56:477–490. doi: 10.1016/j.wasman.2016.07.024 CrossRefGoogle Scholar
  7. 7.
    Edward M, Edwards S, Egwu U, Sallis P (2015) Bio-methane potential test (BMP) using inert gas sampling bags with macroalgae feedstock. Biomass Bioenergy 83:516–524. doi: 10.1016/j.biombioe.2015.10.026 CrossRefGoogle Scholar
  8. 8.
    Oliveira JV, Alves MM, Costa JC (2014) Design of experiments to assess pre-treatment and co-digestion strategies that optimize biogas production from macroalgae Gracilaria vermiculophylla. Bioresour Technol 162:323–330. doi: 10.1016/j.biortech.2014.03.155 CrossRefGoogle Scholar
  9. 9.
    Debowski M, Zielinski M, Grala A, Dudek M (2013) Algae biomass as an alternative substrate in biogas production technologies—review. Renew Sustain Energy Rev 27:596–604. doi: 10.1016/j.rser.2013.07.029 CrossRefGoogle Scholar
  10. 10.
    Valero D, Montes JA, Rico JL, Rico C (2016) Influence of headspace pressure on methane production in biochemical methane potential (BMP) tests. Waste Manag 48:193–198. doi: 10.1016/j.wasman.2015.11.012 CrossRefGoogle Scholar
  11. 11.
    Sel I, Çakmakcı M, Özkaya B, Altan HS (2016) Case study on prediction of remaining methane potential of landfilled municipal solid waste by statistical analysis of waste composition data. Waste Manag 56:310–317. doi: 10.1016/j.wasman.2016.07.023 CrossRefGoogle Scholar
  12. 12.
    Kafle GK, Chen L (2016) Comparison on batch anaerobic digestion of five different livestock manures and prediction of biochemical methane potential (BMP) using different statistical models. Waste Manag 48:492–502. doi: 10.1016/j.wasman.2015.10.021 CrossRefGoogle Scholar
  13. 13.
    Elbeshbishy E, Nakhla G, Hafez H (2012) Biochemical methane potential (BMP) of food waste and primary sludge: influence of inoculum pre-incubation and inoculum source. Bioresour Technol 110:18–25. doi: 10.1016/j.biortech.2012.01.025 CrossRefGoogle Scholar
  14. 14.
    Wang B, Strömberg S, Nges IA, Nistor M, Liu J (2016) Impacts of inoculum pre-treatments on enzyme activity and biochemical methane potential. J Biosci Bioeng 121(5):557–560. doi: 10.1016/j.jbiosc.2015.10.004 CrossRefGoogle Scholar
  15. 15.
    Zou L, Ma C, Liu J, Li M, Ye M, Qian G (2016) Pretreatment of food waste with high voltage pulse discharge towards methane production enhancement. Bioresour Technol 222:82–88. doi: 10.1016/j.biortech.2016.09.104 CrossRefGoogle Scholar
  16. 16.
    Soto M, Vázquez MA, de Vega A, Vilariño JM, Fernández G, de Vicente MES (2015) Methane potential and anaerobic treatment feasibility of Sargassum muticum. Bioresour Technol 189:53–61. doi: 10.1016/j.biortech.2015.03.074 CrossRefGoogle Scholar
  17. 17.
    Zhen G, Lu X, Kobayashi T, Kumar G, Xu K (2016) Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: kinetic modeling and synergistic impact evaluation. Chem Eng J 299:332–341. doi: 10.1016/j.cej.2016.04.118 CrossRefGoogle Scholar
  18. 18.
    Vanegas C, Bartlett J (2013) Anaerobic digestion of Laminaria digitata: the effect of temperature on biogas production and composition. Waste Biomass Valor 4:509–515. doi: 10.1007/s12649-012-9181-z CrossRefGoogle Scholar
  19. 19.
    Migliore G, Alisi C, Sprocati AR, Massi E, Ciccoli R, Lenzi M, Wang A, Cremisini C (2012) Anaerobic digestion of macroalgal biomass and sediments sourced from the Orbetello lagoon, Italy. Biomass Bioenerg 42:69–77. doi: 10.1016/j.biombioe.2012.03.030 CrossRefGoogle Scholar
  20. 20.
    Liu X, Wang W, Gao X, Zhou Y, Shen R (2012) Effect of thermal pretreatment on the physical and chemical properties of municipal biomass waste. Waste Manag 32:249–255. doi: 10.1016/j.wasman.2011.09.027 CrossRefGoogle Scholar
  21. 21.
    Montingelli ME, Tedesco S, Olabi AG (2015) Biogas production from algal biomass: a review. Renew Sustain Energy Rev 43:961–972. doi: 10.1016/j.rser.2014.11.052 CrossRefGoogle Scholar
  22. 22.
    Perez-Rodríguez N, García-Bernet D, Domínguez JM (2016) Effects of enzymatic hydrolysis and ultrasounds pretreatments on corn cob and vine trimming shoots for biogas production. Bioresour Technol 221:130–138. doi: 10.1016/j.biortech.2016.09.013 CrossRefGoogle Scholar
  23. 23.
    Li Y, Jin Y, Li J, Li H, Yu Z (2016) Effects of thermal pretreatment on the biomethane yield and hydrolysis rate of kitchen waste. Appl Energy 172:47–58. doi: 10.1016/j.apenergy.2016.03.080 CrossRefGoogle Scholar
  24. 24.
    Kadam SU, Tiwari BK, O’Connell S, O’Donnell CP (2015) Effect of ultrasound pretreatment on the extraction kinetics of bioactives from brown seaweed (Ascophyllum nodosum). Sep Sci Technol 50:670–675. doi: 10.1080/01496395.2014.960050 CrossRefGoogle Scholar
  25. 25.
    Debowski M, Zieliński M, Rokicka M, Kupczyk K (2015) The possibility of using macroalgae biomass from natural reservoirs as a substrate in the methane fermentation process. Int J Green Energy 12:970–977. doi: 10.1080/15435075.2014.891122 CrossRefGoogle Scholar
  26. 26.
    Marquez GPB, Santiañez WJE, TronoJr GC, Montaño MNE, Araki H, Takeuchi H, Hasegawa T (2014) Seaweed biomass of the Philippines: sustainable feedstock for biogas production. Renew Sustain Energy Rev 38:1056–1068. doi: 10.1016/j.rser.2014.07.056 CrossRefGoogle Scholar
  27. 27.
    Jard G, Dumas C, Delgenes JP, Marfaing H, Sialve B, Steyer JP, Carrère H (2013) Effect of thermochemical pretreatment on the solubilization and anaerobic biodegradability of the red macroalga Palmaria palmata. Biochem Eng J 79:253–258. doi: 10.1016/j.bej.2013.08.011 CrossRefGoogle Scholar
  28. 28.
    Vivekanand V, Eijsink VGH, Horn SJ (2012) Biogas production from the brown seaweed Saccharina latissima: thermal pretreatment and codigestion with wheat straw. J Appl Phycol 24:1295–1301. doi: 10.1007/s10811-011-9779-8 CrossRefGoogle Scholar
  29. 29.
    Qiaoa W, Yan X, Ye J, Sun Y, Wang W, Zhang Z (2011) Evaluation of biogas production from different biomass wastes with/without hydrothermal pretreatment. Renew Energy 36:3313–3318. doi: 10.1016/j.renene.2011.05.002 CrossRefGoogle Scholar
  30. 30.
    Allen E, Wall DM, Herrmann C, Murphy JD (2014) Investigation of the optimal percentage of green seaweed that may be co-digested with dairy slurry to produce gaseous biofuel. Bioresour Technol 170:436–444. doi: 10.1016/j.biortech.2014.08.005 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Hulya Civelek Yoruklu
    • 1
  • Emre Korkmaz
    • 1
  • Neslihan Manav Demir
    • 1
  • Bestami Ozkaya
    • 1
  • Ahmet Demir
    • 1
  1. 1.Department of Environmental Engineering, Faculty of Civil EngineeringYildiz Technical UniversityEsenlerTurkey

Personalised recommendations