Optimization of mixing ratio of ammoniated rice straw and food waste co-digestion and impact of trace element supplementation on biogas production

  • Hongqiong Zhang
  • Lina Luo
  • Wenzhe Li
  • Xiangyou Wang
  • Yong Sun
  • Yongming Sun
  • Weijia Gong


The anaerobic co-digestion of biomass waste, a promising process of reusing resources, is capable of improving methane production. However, the characteristics and composition of fermenting raw material negatively influence the efficiency of methane production. Optimization experiments were systematically performed in this study through anaerobic co-digestion with urea-ammoniated rice straw (UARS) and food waste (FW) as co-substrates. Anaerobic co-digestion of UARS and FW in biogas production under mesophilic conditions (35 °C) was investigated in a 1 L enclosed triangular flask with a total organic load of 6 g volatile solids (VS)/L. The optimal mixing ratio of UARS to FW was close to 1:3, and the methane yield increasing by 8.83% compared with the sole substrate. Furthermore, based on the optimization ratio, supplementation of cobalt (Co) and nickel (Ni) on co-digestion were significantly superior to that of a single element. Additionally, kinetic analysis indicated that trace element remarkably facilitated the reaction rate of co-digestion. Noteworthy, the addition of Co, Ni, and the combination of Co and Ni achieved very significant (p < 0.01) improvement of 6.45, 8.36, and 13.65%. Meanwhile, Ni was substantially promoted the removal rate of VS, enhanced the operational stability of co-digestion and increased the methane content significantly.


Anaerobic co-digestion Ammoniated rice straw Food waste Biogas production Trace element 



The authors are grateful for the financial support provided by grants from the National Key Technology Research and Development Program (No. 2015BAD21B00-1-03) and Scientific Research Foundation for Returned Scholars, Heilongjiang Province (No. LC2016015).


  1. 1.
    Li K, Liu RH, Sun C (2016) A review of methane production from agricultural residues in china. Renew Sustain Energy Rev 54:857–865. doi: 10.1016/j.rser.2015.10.103 CrossRefGoogle Scholar
  2. 2.
    Dong L, Liu SC, Li M, Li ZD, Yuan YX, Yan ZY, Liu XF (2015) Effects of feedstock ratio and organic loading rate on the anaerobic mesophilic co-digestion of rice straw and cow manure. Biores Technol 189:319–326. doi: 10.1016/j.biortech.2015.03.040 CrossRefGoogle Scholar
  3. 3.
    Tripathi M, Sahu JN, Ganesan P (2016) Effect of process parameters on production of biochar from biomass waste through pyrolysis: a review. Renew Sustain Energy Rev 55:467–481. doi: 10.1016/j.rser.2015.10.122 CrossRefGoogle Scholar
  4. 4.
    Demirel B, Göl NP, Onay TT (2013) Evaluation of heavy metal content in digestate from batch anaerobic co-digestion of sunflower hulls and poultry manure. J Mater Cycles Waste Manage 15(2):242–246. doi: 10.1007/s10163-012-0107-4 CrossRefGoogle Scholar
  5. 5.
    Song YC, Kwon SJ, Woo JH (2004) Mesophilic and thermophilic temperature co-phase anaerobic digestion compared with single-stage mesophilic- and thermophilic digestion of sewage sludge. Water Res 38(7):1653–1662. doi: 10.1016/j.watres.2003.12.019 CrossRefGoogle Scholar
  6. 6.
    Shen F, Yuan HR, Pang YZ, Chen SL, Zhu BN, Zou DX, Liu YP, Ma JW, Yu L, Li XJ (2013) Performances of anaerobic co-digestion of fruit and vegetable waste (FVW) and food waste (FW): single-phase vs. two-phase. Biores Technol 144:80–85. doi: 10.1016/j.biortech.2013.06.099 CrossRefGoogle Scholar
  7. 7.
    Ha DVD, Hoefman S, Boeckx P, Verstraete W, Boon N (2010) Copper enhances the activity and salt resistance of mixed methane-oxidizing communities. Appl Microbiol Biotechnol 87(6):2355–2363. doi: 10.1007/s00253-010-2702-4 CrossRefGoogle Scholar
  8. 8.
    Zhang WQ, Wu SB, Guo JB, Zhou J, Dong RJ (2015) Performance and kinetic evaluation of semi-continuously fed anaerobic digesters treating food waste: role of trace elements. Biores Technol 178:297–305. doi: 10.1016/j.biortech.2014.08.046 CrossRefGoogle Scholar
  9. 9.
    Sosnowski P, Wieczorek A, Ledakowicz S (2003) Anaerobic co-digestion of sewage sludge and organic fraction of municipal solid wastes. Adv Environ Res 7(3):609–616. doi: 10.1016/S1093-0191(02)00049-7 CrossRefGoogle Scholar
  10. 10.
    Weiß S, Tauber M, Somitsch W, Meincke R, Müller H, Berg G, Guebitz GM (2010) Enhancement of biogas production by addition of hemicellulolytic bacteria immobilised on activated zeolite. Water Res 44(6):1970–1980. doi: 10.1016/j.watres.2009.11.048 CrossRefGoogle Scholar
  11. 11.
    Zou SZ, Wang XJ, Chen YL, Wan HW, Feng YZ (2016) Enhancement of biogas production in anaerobic co-digestion by ultrasonic pretreatment. Energy Convers Manage 112(1):226–235. doi: 10.1016/j.enconman.2015.12.087 CrossRefGoogle Scholar
  12. 12.
    Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123(3):143–156. doi: 10.1016/j.apenergy.2014.02.035 CrossRefGoogle Scholar
  13. 13.
    Banchorndhevakul S (2002) Effect of urea and urea–gamma treatments on cellulose degradation of Thai rice straw and corn stalk. Radiat Phys Chem 64(5–6):417–422. doi: 10.1016/S0969-806X(01)00678-8 CrossRefGoogle Scholar
  14. 14.
    Schattauer A, Abdoun E, Weiland P, Plöchl M, Heiermann M (2011) Abundance of trace elements in demonstration biogas plants. Biosys Eng 108(1):57–65. doi: 10.1016/j.biosystemseng.2010.10.010 CrossRefGoogle Scholar
  15. 15.
    Facchin V, Cavinato C, Fatone F, Pavan P, Cecchi F, Bolzonella D (2013) Effect of trace element supplementation on the mesophilic anaerobic digestion of foodwaste in batch trials: the influence of inoculum origin. Biochem Eng J 70(2):71–77. doi: 10.1016/j.bej.2012.10.004 CrossRefGoogle Scholar
  16. 16.
    Karlsson A, Einarsson P, Schnürer A, Sundberg C, Ejlertsson J, Svensson BH (2012) Impact of trace element addition on degradation efficiency of volatile fatty acids, oleic acid and phenyl acetate and on microbial populations in a biogas digester. J Biosci Bioeng 114(4):446–452. doi: 10.1016/j.jbiosc.2012.05.010 CrossRefGoogle Scholar
  17. 17.
    Luo L, Ding Q, Gong W, Wang Z, Li W, Qin L (2015) Urea ammoniated pretreatment improving dry anaerobic fermentation characteristics of rice straw. Trans Chin Soc Agric Eng 31(19):234–239. doi: 10.11975/j.issn.1002-6819.2015.19.033 Google Scholar
  18. 18.
    Siddiqui AA, Richards DJ, Powrie W (2012) Investigations into the landfill behaviour of pretreated wastes. Waste Manage 32(32):1420–1426. doi: 10.1016/j.wasman.2012.03.016 CrossRefGoogle Scholar
  19. 19.
    Jiang T, Schuchardt F, Li G, Guo R, Zhao YQ (2011) Effect of C/N ratio, aeration rate and moisture content on ammonia and greenhouse gas emission during the composting. J Environ Sci 23(10):1754–1760. doi: 10.1016/S1001-0742(10)60591-8 CrossRefGoogle Scholar
  20. 20.
    Choong YY, Norli I, Abdullah AZ, Yhaya MF (2016) Impacts of trace element supplementation on the performance of anaerobic digestion process: a critical review. Biores Technol 209:369–379. doi: 10.1016/j.biortech.2016.03.028 CrossRefGoogle Scholar
  21. 21.
    Guo YP, Fan SQ, Fan YT, Pan CM, Hou HW (2010) The preparation and application of crude cellulase for cellulose-hydrogen production by anaerobic fermentation. Int J Hydrogen Energy 35(2):459–468. doi: 10.1016/j.ijhydene.2009.10.021 CrossRefGoogle Scholar
  22. 22.
    Westerholm M, Hansson M, Schnürer A (2012) Improved biogas production from whole stillage by co-digestion with cattle manure. Biores Technol 114(3):314–319. doi: 10.1016/j.biortech.2012.03.005 CrossRefGoogle Scholar
  23. 23.
    Zhen Guangyin, Xueqin Lu, Kobayashi Takuro, Kumar Gopalakrishnan, Kaiqin Xu (2016) Anaerobic co-digestion on improving methane production from mixed microalgae (Scenedesmus sp., Chlorella sp.) and food waste: kinetic modeling and food waste: Kinetic modeling and synergistic impact evaluation. Chem Eng J 299:332–341. doi: 10.1016/j.cej.2016.04.118 CrossRefGoogle Scholar
  24. 24.
    Díaz I, Donoso-Bravo A, Fdz-Polanco M (2011) Effect of microaerobic conditions on the degradation kinetics of cellulose. Biores Technol 102(21):10139–10142. doi: 10.1016/j.biortech.2011.07.096 CrossRefGoogle Scholar
  25. 25.
    Page LH, Ni JQ, Heber AJ, Mosier NS, Liu X, Joo HS, Ndegwa PM, Harrison JH (2014) Characteristics of volatile fatty acids in stored dairy manure before and after anaerobic digestion. Biosys Eng 118(3):16–28. doi: 10.1016/j.biosystemseng.2013.11.004 CrossRefGoogle Scholar
  26. 26.
    Yenigün O, Demirel B (2013) Ammonia inhibition in anaerobic digestion: a review. Process Biochem 48(5–6):901–911. doi: 10.1016/j.procbio.2013.04.012 CrossRefGoogle Scholar
  27. 27.
    Zhang CS, Su HJ, Tan TW (2013) Batch and semi-continuous anaerobic digestion of food waste in a dual solid-liquid system. Biores Technol 145(19):10–16. doi: 10.1016/j.biortech.2013.03.030 CrossRefGoogle Scholar
  28. 28.
    Kim IS, Kim DH, Hyun SH (2000) Effect of particle size and sodium ion concentration on anaerobic thermophilic food waste digestion. Water Sci Technol 41(3):67–73. doi: 10.1016/S0218-3013(00)00005-2 Google Scholar
  29. 29.
    Zinder SH (1990) Conversion of acetic acid to methane by thermophiles. FEMS Microbiol Lett 75(2–3):125–137. doi: 10.1111/j.1574-6968.1990.tb04090.x CrossRefGoogle Scholar
  30. 30.
    Li Jianghao, Zhang Ruihong, Siddhu Muhammad Abdul Hanan, He Yanfeng, Wang Wen, Li Yeqing, Chen Chang, Liu Guangqing (2015) Enhancing methane production of corn stover through a novel way: sequent pretreatment of potassium hydroxide and steam explosion. Biores Technol 181:345–350. doi: 10.1016/j.biortech.2015.01.050 CrossRefGoogle Scholar
  31. 31.
    Wang XJ, Yang GH, Feng YZ, Ren GX, Han XH (2012) Optimizing feeding composition and carbon-nitrogen ratios for improved methane yield during anaerobic co-digestion of dairy, chicken manure and wheat straw. Biores Technol 120:78–83. doi: 10.1016/j.biortech.2012.06.058 CrossRefGoogle Scholar
  32. 32.
    Li Y, Park SY, Zhu J (2011) Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev 15(1):821–826. doi: 10.1016/j.rser.2010.07.042 CrossRefGoogle Scholar
  33. 33.
    Shiemke AK, Eirich LD, Loehr TM (1983) Resonance Raman spectroscopic characterization of the nickel cofactor, F430, form methanogenic bacteria. Biochim et Biophys Acta (BBA)-Protein Struct Mol Enzymol 748(1):143–147. doi: 10.1016/0167-4838(83)90037-7 CrossRefGoogle Scholar

Copyright information

© Springer Japan KK 2017

Authors and Affiliations

  • Hongqiong Zhang
    • 1
  • Lina Luo
    • 1
  • Wenzhe Li
    • 1
  • Xiangyou Wang
    • 1
    • 2
  • Yong Sun
    • 1
  • Yongming Sun
    • 3
  • Weijia Gong
    • 1
  1. 1.College of EngineeringNortheast Agricultural UniversityHarbinChina
  2. 2.School of Agricultural Engineering and Food ScienceShandong University of TechnologyZiboChina
  3. 3.CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhouChina

Personalised recommendations