Journal of Material Cycles and Waste Management

, Volume 20, Issue 1, pp 695–701 | Cite as

The broad spectrum of possibilities for spent coffee grounds valorisation

  • Francesca Girotto
  • Alberto Pivato
  • Raffaello Cossu
  • George Elambo Nkeng
  • Maria Cristina Lavagnolo
NOTE

Abstract

Coffee is the world’s second most traded commodity and the most renowned drink worldwide. The increasing production of coffee has been accompanied by a rise in consumption, and consequent increment in the amount of spent coffee grounds (SCGs) remaining as a solid residue from coffee brewing. In view of the high content of biodegradable compounds, if disposed, SCGs will certainly need to be biostabilized, although they should preferably be exploited in a biorefinery chain scheme. A wide range of alternative options is available for use in recycling SCGs as a valuable resource: food additives, pharmaceutical components, bio-sorbents, bio-fuels, and bio-products. The option of producing biogas from SCGs was tested and lab-scale bio-methane potential experiments were performed using different substrate to inoculum (S/I) ratios, namely 0.5, 1, and 2. A S/I ratio of 2 was found to be the optimal condition, resulting in a methane yield of 0.36 m3CH4/kgVS.

Keywords

Spent coffee grounds (SCGs) Biorefinery Anaerobic digestion 

References

  1. 1.
    International Coffee Organization (2016) Trade statistics tables. http://www.ico.org/trade_statistics.asp (2016). Accessed 24 Oct 2016
  2. 2.
    Murthy PS, Madhava Naidu M (2012) Sustainable management of coffee industry by-products and value addition—A review. Resour Conserv Recy 66:45–58. doi: 10.1016/j.resconrec.2012.06.005 CrossRefGoogle Scholar
  3. 3.
    Obruca S, Benesova P, Kucera D, Petrik S, Marova I (2015) Biotechnological conversion of spent coffee grounds into polyhydroxyalkanoates and carotenoids. New Biotechnol 32(6):569–574. doi: 10.1016/j.nbt.2015.02.008 CrossRefGoogle Scholar
  4. 4.
    Park J, Kim B, Lee JW (2016) In-situ transesterification of wet spent coffee grounds for sustainable biodiesel production. Bioresour Technol 221:55–60. doi: 10.1016/j.biortech.2016.09.001 CrossRefGoogle Scholar
  5. 5.
    Al-Dhabi NA, Ponmurugan K, Maran Jeganathan P (2017) Development and validation of ultrasound-assisted solid-liquid extraction of phenolic compounds from waste spent coffee grounds. Ultrason Sonochem 34:206–213. doi: 10.1016/j.ultsonch.2016.05.005 CrossRefGoogle Scholar
  6. 6.
    Girotto F, Alibardi L, Cossu R (2015) Food waste generation and industrial uses: a review. Waste Manag 45:32–41. doi: 10.1016/j.wasman.2015.06.008 CrossRefGoogle Scholar
  7. 7.
    Lopez-Barrera DM, Vazquez-Sanchez K, Loarca-Pina MG, Campos-Vega R (2016) Spent coffee grounds, an innovative source of colonic fermentable compounds, inhibit inflammatory mediators in vitro. Food Chem 212:282–290. doi: 10.1016/j.foodchem.2016.05.175 CrossRefGoogle Scholar
  8. 8.
    Bravo J, Monente C, Juániz I, De Peña MP, Cid C (2013) Influence of extraction process on antioxidant capacity of spent coffee. Food Res Int 50(2):610–616. doi: 10.1016/j.foodres.2011.04.026 CrossRefGoogle Scholar
  9. 9.
    Fki I, Allouche N, Sayadi S (2005) The use of polyphenolic extract, purified hydroxytyrosol and 3, 4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food Chem 93(2):197–204. doi: 10.1016/j.foodchem.2004.09.014 CrossRefGoogle Scholar
  10. 10.
    Sampaio A, Dragone G, Vilanova M, Oliveira JM, Teixeira JA, Mussatto SI (2013) Production, chemical characterization, and sensory profile of a novel spirit elaborated from spent coffee ground. LWT Food Sci and Technol 54(2):557–563. doi: 10.1016/j.lwt.2013.05.042 CrossRefGoogle Scholar
  11. 11.
    Machado C, Soccol CR, de Oliveira BH, Pandey A (2002) Gibberellic acid production by solid-state fermentation in coffee husk. Appl Biochem Biotech 102(1–6):179–191. doi: 10.1385/ABAB:102-103:1-6:179 CrossRefGoogle Scholar
  12. 12.
    Franca AS, Oliveira LS, Ferreira ME (2009) Kinetics and equilibrium studies of methylene blue adsorption by spent coffee grounds. Desalination 249(1):267–272. doi: 10.1016/j.desal.2008.11.017 CrossRefGoogle Scholar
  13. 13.
    Nakamura T, Hirata M, Kawasaki N, Tanada S, Tamura T, Nakahori Y (2003) Decolorization of indigo carmine by charcoal from extracted residue of coffee beans. J Environ Sci Heal A 38(3):555–562. doi: 10.1081/ESE-120016917 CrossRefGoogle Scholar
  14. 14.
    Hirata M, Kawasaki N, Nakamura T, Matsumoto K, Kabayama M, Tamura T, Tanada S (2002) Adsorption of dyes onto carbonaceous materials produced from coffee grounds by microwave treatment. J Colloid Interface Sci 254(1):17–22. doi: 10.1006/jcis.2002.8570 CrossRefGoogle Scholar
  15. 15.
    Rufford TE, Hulicova-Jurcakova D, Zhu Z, Lu GQ (2008) Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem Commun 10(10):1594–1597. doi: 10.1016/j.elecom.2008.08.022 CrossRefGoogle Scholar
  16. 16.
    Jung KW, Choi BH, Hwang MJ, Jeong TU, Ahn KH (2016) Fabrication of granular activated carbons derived from spent coffee grounds by entrapment in calcium alginate beads for adsorption of acid orange 7 and methylene blue. Bioresour Technol 219:185–195. doi: 10.1016/j.biortech.2016.07.098 CrossRefGoogle Scholar
  17. 17.
    Burton R, Fan X, Austic G (2010) Evaluation of two-step reaction and enzyme catalysis approaches for biodiesel production from spent coffee grounds. Int J Green Energy 7(5):530–536. doi: 10.1080/15435075.2010.515444 CrossRefGoogle Scholar
  18. 18.
    Kondamudi N, Mohapatra SK, Misra M (2008) Spent coffee grounds as a versatile source of green energy. J Agric Food Chem 56(24):11757–11760. doi: 10.1021/jf802487s CrossRefGoogle Scholar
  19. 19.
    Couto RM, Fernandes J, da Silva MG, Simões PC (2009) Supercritical fluid extraction of lipids from spent coffee grounds. J Supercrit Fluids 51(2):159–166. doi: 10.1016/j.supflu.2009.09.009 CrossRefGoogle Scholar
  20. 20.
    Bok JP, Choi HS, Choi YS, Park HC, Kim SJ (2012) Fast pyrolysis of coffee grounds: characteristics of product yields and biocrude oil quality. Energy 47(1):17–24. doi: 10.1016/j.energy.2012.06.003 CrossRefGoogle Scholar
  21. 21.
    Li X, Strezov V, Kan T (2014) Energy recovery potential analysis of spent coffee grounds pyrolysis products. J Anal Appl Pyrolysis 110:79–87. doi: 10.1016/j.jaap.2014.08.012 CrossRefGoogle Scholar
  22. 22.
    Yang L, Nazari L, Yuan Z, Corscadden K, Xu C, He Q (2016) Hydrothermal liquefaction of spent coffee grounds in water medium for bio-oil production. Biomass Bioenerg 86:191–198. doi: 10.1016/j.biombioe.2016.02.005 CrossRefGoogle Scholar
  23. 23.
    Al-Hamamre Z, Foerster S, Hartmann F, Kröger M, Kaltschmitt M (2012) Oil extracted from spent coffee grounds as a renewable source for fatty acid methyl ester manufacturing. Fuel 96:70–76. doi: 10.1016/j.fuel.2012.01.023 CrossRefGoogle Scholar
  24. 24.
    Cruz MV, Paiva A, Lisboa P, Freitas F, Alves VD, Simões P, Barreiros S, Reis MA (2014) Production of polyhydroxyalkanoates from spent coffee grounds oil obtained by supercritical fluid extraction technology. Bioresour Technol 157:360–363. doi: 10.1016/j.biortech.2014.02.013 CrossRefGoogle Scholar
  25. 25.
    Pan W, Perrotta JA, Stipanovic AJ, Nomura CT, Nakas JP (2012) Production of polyhydroxyalkanoates by Burkholderia cepacia ATCC 17759 using a detoxified sugar maple hemicellulosic hydrolysate. J Ind Microbiol Biotechnol 39(3):459–469. doi: 10.1007/s10295-011-1040-6 CrossRefGoogle Scholar
  26. 26.
    Lane A (1983) Anaerobic digestion of spent coffee grounds. Biomass 3(4):247–268CrossRefGoogle Scholar
  27. 27.
    Leifa F, Pandey A, Soccol CR (2001) Production of Flammulina velutipes on coffee husk and coffee spent-ground. Brazilian Archives of Biology and Technology 44(2):205–212. doi: 10.1590/S1516-89132001000200015 CrossRefGoogle Scholar
  28. 28.
    Pushpa SM, Manonmani H (2008) Bioconversion of coffee industry wastes with white rot fungus Pleurotus florida. Res J of Environ Sci 2(2):145–150. doi: 10.3923/rjes.2008.145.150 CrossRefGoogle Scholar
  29. 29.
    Cruz GM (1983) Resíduos de cultura e indústria. Informe Agropecuário 9:32–37Google Scholar
  30. 30.
    Mussatto SI, Carneiro LM, Silva JP, Roberto IC, Teixeira JA (2011) A study on chemical constituents and sugars extraction from spent coffee grounds. Carbohydr Polym 83(2):368–374. doi: 10.1016/j.carbpol.2010.07.063 CrossRefGoogle Scholar
  31. 31.
    Claude B (1979) Étude bibliographique: utilisation dês sous-produits du café. Café Cacao Thé Paris 23(2):146–152Google Scholar
  32. 32.
    Givens D, Barber W (1986) In vivo evaluation of spent coffee grounds as a ruminant feed. Agric Wastes 18(1):69–72CrossRefGoogle Scholar
  33. 33.
    Ramalakshmi K, Rao LJM, Takano-Ishikawa Y, Goto M (2009) Bioactivities of low-grade green coffee and spent coffee in different in vitro model systems. Food Chem 115(1):79–85. doi: 10.1016/j.foodchem.2008.11.063 CrossRefGoogle Scholar
  34. 34.
    Passos CP, Coimbra MA (2013) Microwave superheated water extraction of polysaccharides from spent coffee grounds. Carbohydr Polym 94(1):626–633. doi: 10.1016/j.carbpol.2013.01.088 CrossRefGoogle Scholar
  35. 35.
    Passos CP, Moreira AS, Domingues MRM, Evtuguin DV, Coimbra MA (2014) Sequential microwave superheated water extraction of mannans from spent coffee grounds. Carbohydr Polym 103:333–338. doi: 10.1016/j.carbpol.2013.12.053 CrossRefGoogle Scholar
  36. 36.
    Simões J, Maricato É, Nunes FM, Domingues MR, Coimbra MA (2014) Thermal stability of spent coffee ground polysaccharides: galactomannans and arabinogalactans. Carbohydr Polym 101:256–264. doi: 10.1016/j.carbpol.2013.09.042 CrossRefGoogle Scholar
  37. 37.
    Namane A, Mekarzia A, Benrachedi K, Belhaneche-Bensemra N, Hellal A (2005) Determination of the adsorption capacity of activated carbon made from coffee grounds by chemical activation with ZnCl 2 and H 3 PO 4. J Hazard Mater 119(1):189–194. doi: 10.1016/j.jhazmat.2004.12.006 CrossRefGoogle Scholar
  38. 38.
    Silva M, Nebra S, Silva MM, Sanchez C (1998) The use of biomass residues in the Brazilian soluble coffee industry. Biomass Bioenerg 14(5):457–467. doi: 10.1016/S0961-9534(97)10034-4 CrossRefGoogle Scholar
  39. 39.
    Sprules RK (1999) Coffee-based solid fuel composition. In: Google Patents, (1999)Google Scholar
  40. 40.
    Limousy L, Jeguirim M, Dutournié P, Kraiem N, Lajili M, Said R (2013) Gaseous products and particulate matter emissions of biomass residential boiler fired with spent coffee grounds pellets. Fuel 107:323–329. doi: 10.1016/j.fuel.2012.10.019 CrossRefGoogle Scholar
  41. 41.
    Choi IS, Wi SG, Kim S-B, Bae H-J (2012) Conversion of coffee residue waste into bioethanol with using popping pretreatment. Bioresour Technol 125:132–137. doi: 10.1016/j.biortech.2012.08.080 CrossRefGoogle Scholar
  42. 42.
    de Melo MM, Barbosa HM, Passos CP, Silva CM (2014) Supercritical fluid extraction of spent coffee grounds: measurement of extraction curves, oil characterization and economic analysis. J Supercrit Fluids 86:150–159. doi: 10.1016/j.supflu.2013.12.016 CrossRefGoogle Scholar
  43. 43.
    Abdullah M, Koc AB (2013) Oil removal from waste coffee grounds using two-phase solvent extraction enhanced with ultrasonication. Renew Energy 50:965–970. doi: 10.1016/j.renene.2012.08.073 CrossRefGoogle Scholar
  44. 44.
    Romeiro G, Salgado E, Silva R, Figueiredo M-K, Pinto P, Damasceno R (2012) A study of pyrolysis oil from soluble coffee ground using low temperature conversion (LTC) process. J Anal Appl Pyrolysis 93:47–51. doi: 10.1016/j.jaap.2011.09.006 CrossRefGoogle Scholar
  45. 45.
    Neves L, Ribeiro R, Oliveira R, Alves MM (2006) Enhancement of methane production from barley waste. Biomass Bioenerg 30(6):599–603. doi: 10.1016/j.biombioe.2005.12.003 CrossRefGoogle Scholar
  46. 46.
    AOCS (1997) Official method of analysis and recommended practices, 5th edn, Ba 6-84, Cd 8-53 and Ce 2-66. American Oil Chemists Society, ChampaignGoogle Scholar
  47. 47.
    APHA, AWWA, WPCF (1999) Standard methods for the examination of water and wastewater, 20th ed. American Public Health Association, American Water Works Association, Water Environment Federation, Washington DCGoogle Scholar
  48. 48.
    Van Ginkel SW, Oh S-E, Logan BE (2005) Biohydrogen gas production from food processing and domestic wastewaters. Int J Hydrogen Energ 30(15):1535–1542. doi: 10.1016/j.ijhydene.2004.09.017 CrossRefGoogle Scholar
  49. 49.
    Kong F, Engler C, Soltes E (1992) Effects of cell-wall acetate, xylan backbone and lignin on enzymatic hydrolysis of aspen wood. Appl Biochem and Biotechnol 34–35:23–35. doi: 10.1007/BF02920531 CrossRefGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  • Francesca Girotto
    • 1
  • Alberto Pivato
    • 1
  • Raffaello Cossu
    • 1
  • George Elambo Nkeng
    • 2
  • Maria Cristina Lavagnolo
    • 1
  1. 1.Department of Industrial EngineeringUniversity of PadovaPaduaItaly
  2. 2.National Advanced School of Public Works YaoundéYaoundéCameroon

Personalised recommendations