Journal of Material Cycles and Waste Management

, Volume 20, Issue 1, pp 496–504 | Cite as

Crab and prawn shell utilization as a source of bio-based thermoplastics through graft polymerization with acrylate monomers



To recycle crab and prawn shell wastes and prepare environment friendly thermoplastics, various acrylate monomers—methyl (meth)acrylates, ethyl (meth)acrylates, and butyl (meth)acrylates were grafted onto molecular chains of chitin and crude protein in shells. The acrylates were proved to be successfully grafted onto the demineralized shells through FTIR characterization and grafting parameters of the shell-g-polyacrylates were obtained through titration and Soxhlet extraction. Then, effects of grafting ratio and molecular structure of acrylate monomers on tensile properties and water resistance of the grafted shell thermoplastic films were surveyed. With the increase in grafting ratio of the demineralized shell-g-PMMA, tensile strength of the thermoplastic films initially increased, reached the maximum when the ratio was 31.86%, and then leveled off while both the elongation and water resistance of the film showed an increasing trend. In addition, with the increase in the alkyl chain length of ester group in acrylate unit, tensile strength and water resistance of the grafted shell film decreased continuously while tensile elongation kept increasing. As for α-methyl in methacrylate unit, the film prepared from the shells grafted with methacrylates had higher tensile strength and water resistance but lower elongation than the ones grafted with corresponding acrylates.


Crab and prawn shells Thermoplastics Graft polymerization Acrylates Molecular structure 



The work was supported financially by Technological Research Project for Public Welfare of Zhejiang Province [No. 2016C34009; No. 2017C34009] and Scientific Research Program of Zhejiang Province Department of Education [No. Y201533919]. Financial sponsors do not endorse the views expressed in this publication.


  1. 1.
    Hu CY, Reddy N, Yan KL, Yang YQ (2011) Acetylation of chicken feathers for thermoplastic applications. J Agr Food Chem 59:10517–10523. doi: 10.1021/jf2023676 CrossRefGoogle Scholar
  2. 2.
    Reddy N, Jin EQ, Chen LH, Jiang X, Yang YQ (2012) Extraction, characterization of components, and potential thermoplastic applications of camelina meal grafted with vinyl monomers. J Agr Food Chem 60:4872–4879. doi: 10.1021/jf300695k CrossRefGoogle Scholar
  3. 3.
    Jin EQ, Li ML, Zhang LY (2014) Effect of polymerization conditions on grafting of methyl methacrylate onto feather keratin for thermoplastic applications. J Polym Mater 31:169–183Google Scholar
  4. 4.
    Shi J (2011) Studies on shrimp and crab shell waste of the resource utilization. Dissertation, Hainan UniversityGoogle Scholar
  5. 5.
    Liang ZW, Huang CT, Dzung NA, Wang SL (2015) Squid pen chitin chitooligomers as food colorants absorbers. Mar Drugs 13:681–696. doi: 10.3390/md13010681 CrossRefGoogle Scholar
  6. 6.
    Draczynski Z, Bogun M, Rabiej S, Mikolajczyk T, Szparaga G, Krol P (2013) New generation butyric-acetate copolymer of chitin (BOC) fibres with ceramic HAp and TCP nanoadditives for the manufacture of fibrous composite materials. Fiber Polym 14:1107–1117. doi: 10.1007/s12221-013-1107-2 CrossRefGoogle Scholar
  7. 7.
    Champagne P, Li CX (2009) Use of Sphagnum peat moss and crushed mollusk shells in fixed-bed columns for the treatment of synthetic landfill leachate. J Mater Cycles Wast 11:339–347. doi: 10.1007/s10163-009-0262-4 CrossRefGoogle Scholar
  8. 8.
    Imtiaz T, Lee KK, Munro CA, MacCallum DM, Shankland GS, Johnson EM, MacGregor MS, Bal AM (2012) Echinocandin resistance due to simultaneous FKS mutation and increased cell wall chitin in a Candida albicans bloodstream isolate following brief exposure to caspofungin. J Med Microbiol 61:1330–1334. doi: 10.1099/jmm.0.045047-0 CrossRefGoogle Scholar
  9. 9.
    Wei Q (2014) Fast-swelling porous starch-g-poly(acrylic acid) superabsorbents. Iran Polym J 23:637–643. doi: 10.1007/s13726-014-0257-4 CrossRefGoogle Scholar
  10. 10.
    Bianchi E, Bonazza A, Marsano E, Russo S (1999) Free radical grafting onto cellulose in homogeneous conditions. 2. Modified cellulose-methyl methacrylate system. Carbohyd Polym 41:47–53. doi: 10.1016/S0144-8617(99)00068-5 CrossRefGoogle Scholar
  11. 11.
    Li ML, Jin EQ, Qiao ZY, Mao DD (2015) Effects of graft modification on the properties of chitosan for warp sizing. Fiber Polym 16:1098–1105. doi: 10.1007/s12221-015-1098-2 CrossRefGoogle Scholar
  12. 12.
    Li ML, Jin EQ, Zhang LY (2016) Effects of graft modification on the water solubility, apparent viscosity, and adhesion of feather keratin for warp sizing. J Text I(107):395–404. doi: 10.1080/00405000.2015.1034931 Google Scholar
  13. 13.
    Tsukada M, Shiozaki H, Freddi G, Crighton JS (1997) Graft copolymerization of benzyl methacrylate onto wool fibers. J Appl Polym Sci 64:343–350. doi: 10.1002/(SICI)1097-4628(19970411)64:2<343::AID-APP15>3.0.CO;2-1 CrossRefGoogle Scholar
  14. 14.
    Feng LD, Zhou ZY, Dufresne A, Huang J, Wei M, An LJ (2009) Structure and properties of new thermoforming bionanocomposites based on chitin whisker-graft-polycaprolactone. J Appl Polym Sci 112:2830–2837. doi: 10.1002/app.29731 CrossRefGoogle Scholar
  15. 15.
    Chen PF, Song H, Wang Y, Chen PZ, Shen X, Yao S (2015) Homogeneous acetylation of hemicelluloses from soy sauce residue in imidazolium-based ionic liquid. J Mater Cycles Waste 17:574–582. doi: 10.1007/s10163-014-0287-1 CrossRefGoogle Scholar
  16. 16.
    Varshney S, Jain P, Srivastava S (2016) Application of ameliorated wood pulp to recover Cd(II), Pb(II), and Ni(II) from e-waste. J Mater Cycles Waste. doi: 10.1007/s10163-016-0539-3 (Publish online 01 September 2016) Google Scholar
  17. 17.
    James EM (1999) Polymer data handbook. Oxford University Press, New York, pp 642–643Google Scholar
  18. 18.
    Mondal MIH, Uraki Y, Ubukata M, Itoyama K (2008) Graft polymerization of vinyl monomers onto cotton fibres pretreatment with amines. Cellulose 15:581–592. doi: 10.1007/s10570-008-9210-z CrossRefGoogle Scholar
  19. 19.
    Trimnell D, Fanta GF, Salch JH (1996) Graft polymerization of methyl acrylate onto granular starch: comparison of the Fe2+/H2O2 and ceric initiating systems. J Appl Polym Sci 60:285–292. doi: 10.1002/(SICI)1097-4628(19960418)60:3<285::AID-APP1>3.0.CO;2-H CrossRefGoogle Scholar
  20. 20.
    Sakia CN, Ali F (1999) Graft copolymerization of methylmethacrylate onto high α-cellulose pulp extracted from Hibiscus sabdariffa and Gmelina arborea. Bioresour Techn 68:165–171. doi: 10.1016/S0960-8524(98)00138-2 CrossRefGoogle Scholar
  21. 21.
    Zhu ZF, Qiao ZY, Kang CZ, Li YH (2004) Effect of acrylate constituent units on adhesion of polyacrylate sizes to fiber substrates. J Appl Polym Sci 91:3016–3022. doi: 10.1002/app.13508 CrossRefGoogle Scholar
  22. 22.
    Ren L, Tokura S (1994) Structural aspects of poly(methyl methacrylate)-grafted β-chitin copolymers initiated by ceric salt. Carbohyd Polym 23:19–25. doi: 10.1016/0144-8617(94)90086-8 CrossRefGoogle Scholar
  23. 23.
    Rubinson KA, Rubinson JF (2003) Contemporary instrumental analysis. Science Press, Beijing, pp 467–468Google Scholar
  24. 24.
    Sun YY, Shao ZZ, Zhou L, Yu TY (1998) Compatibilization of acrylic polymer-​silk fibroin blend fibers. 1. Graft copolymerization of acrylonitrile onto silk fibroin. J Appl Polym Sci 69:1089–1097. doi: 10.1002/(SICI)1097-4628(19980808)69:6<1089::AID-APP5>3.0.CO;2-C CrossRefGoogle Scholar
  25. 25.
    Qiao ZY, Zhu ZF, Zhang ZF, Hong LY, Wang T (2012) Effects of molecular structure and molar content of acrylate units on aerobic biodegradability of acrylate copolymeric sizing agents. Text Res J 82:889–898. doi: 10.1177/0040517512436825 CrossRefGoogle Scholar
  26. 26.
    Qiao ZY, Zhu H, Jin EQ, Zhang ZX, Li YL (2014) Effect of acrylate constituent units on the COD removal rates of acrylate copolymers for warp sizing. AATCC J Res 1, 1–7. doi: 10.14504/ajr.1.2.1 CrossRefGoogle Scholar

Copyright information

© Springer Japan 2017

Authors and Affiliations

  1. 1.School of Textiles and ApparelShaoxing UniversityShaoxingPeople’s Republic of China

Personalised recommendations