A bibliometric analysis of biodiesel research during 1991–2015

  • Min Zhang
  • Zhen Gao
  • Tianlong Zheng
  • Yingqun Ma
  • Qunhui Wang
  • Ming Gao
  • Xiaohong Sun


A bibliometric analysis based on the Science Citation Index Expanded (SCI-EXPANDED) from the Web of Science was carried out to provide insights into research activities and tendencies of the global biodiesel from 1991 to 2015. The document type and language, characteristics of publication outputs, Web of Science categories, journals, countries, institutions, author keyword and most cited articles were emphasized. The results indicated that annual output of the related scientific articles increased steadily. The top six categories focus on different aspects of biodiesel research. Bioresource Technology and Fuel were the two most frequent journals in the field of biodiesel research. The USA took a leading position and had the highest h-index (108) out of 122 countries/territories, followed by China and Brazil. Finally, author keywords and most cited articles were analyzed, indicating that microalgae, Jatropha curcas, vegetable oil and waste cooking oil are the most general raw materials for biodiesel production.


Bibliometric analysis Biodiesel Research trend Scientometrics 



This study is supported by the Projects in the National Science and Technology Pillar Program during the 12th 5-year Plan period (2014BAC24B01-02) and Natural Science Foundation of China (Grant No. 51278050). The authors wish to thank Professor Yuh-Shan Ho for technical support.

Supplementary material

10163_2016_575_MOESM1_ESM.docx (92 kb)
Supplementary material 1 (DOCX 92 kb)


  1. 1.
    Fukuda H, Kondo A, Noda H (2001) Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92:405–416CrossRefGoogle Scholar
  2. 2.
    Maa F, Hanna MA (1999) Biodiesel production: a review. Bioresour Technol 70:1–15CrossRefGoogle Scholar
  3. 3.
    Barnwal BK, Sharma MP (2005) Prospects of biodiesel production from vegetable oils in India. Renew Sustain Energy Rev 9(4):363–378CrossRefGoogle Scholar
  4. 4.
    Du W, Li W, Sun T, Chen X, Liu D (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl Microbiol Biot 79(3):331–337CrossRefGoogle Scholar
  5. 5.
    Steen EJ, Kang Y, Bokinsky G, Hu Z, Schirmer A, McClure A, Del Cardayre SB, Keasling JD (2010) Microbial production of fatty-acid-derived fuels and chemicals from plant biomass. Nature 463(7280):559–562CrossRefGoogle Scholar
  6. 6.
    Zhang F, Carothers JM, Keasling JD (2012) Design of a dynamic sensor-regulator system for production of chemicals and fuels derived from fatty acids. Nat Biotechnol 30(4):354–359CrossRefGoogle Scholar
  7. 7.
    Dequeant ML, Glynn E, Gaudenz K, Wahl M, Chen J, Mushegian A, Pourquie O (2006) A complex oscillating network of signaling genes underlies the mouse segmentation clock. Science 314(5805):1595–1598CrossRefGoogle Scholar
  8. 8.
    Rawat I, Ranjith Kumar R, Mutanda T, Bux F (2013) Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Appl Energ 103:444–467CrossRefGoogle Scholar
  9. 9.
    Phan AN, Phan TM (2008) Biodiesel production from waste cooking oils. Fuel 87(17–18):3490–3496CrossRefGoogle Scholar
  10. 10.
    Primata M, Seo YC, Chu YH (2013) Effect of alkali catalyst on biodiesel production in South Korea from mixtures of fresh soybean oil and waste cooking oil. J Mater Cycles Waste 15(2):223–228CrossRefGoogle Scholar
  11. 11.
    Williams A (2016) Imports in the EU’s renewable energy policy: environmental non-tariff barriers and developing country biodiesel. Int J Environ Sustain Dev 15(2):129–145CrossRefGoogle Scholar
  12. 12.
    Johnston M, Holloway T (2007) A global comparison of national biodiesel production potentials. Environ Sci Technol 41(23):7967–7973CrossRefGoogle Scholar
  13. 13.
    Tolmac D, Prulovic S, Lambic M, Radovanovic L, Tolmac J (2014) Global trends on production and utilization of biodiesel. Energy Source Part B 9:130–139CrossRefGoogle Scholar
  14. 14.
    The Worldwatch Institute (2016) Renewables 2016: Global Status Report.
  15. 15.
    Du W, Li W, Sun T, Chen X, Liu D (2008) Perspectives for biotechnological production of biodiesel and impacts. Appl Microbiol Biotechnol 79(3):331–337CrossRefGoogle Scholar
  16. 16.
    Fajriutami T, Seo YC, Chu YH (2013) Optimization of two-step catalyzed biodiesel production from soybean waste cooking oil. J Mater Cycles Waste 15(2):179–186CrossRefGoogle Scholar
  17. 17.
    Kusdiana D, Saka S (2001) Kinetics of transesterification in rapeseed oil to biodiesel fuel as treated in supercritical methanol. Fuel 80:693–698CrossRefGoogle Scholar
  18. 18.
    Canakci M, Erdil A, Arcaklioğlu E (2006) Performance and exhaust emissions of a biodiesel engine. Appl Energy 83(6):594–605CrossRefGoogle Scholar
  19. 19.
    Wang L, Wang Q, Zhang X, Cai W, Sun X (2013) A bibliometric analysis of anaerobic digestion for methane research during the period 1994–2011. J Mater Cycles Waste 15(1):1–8CrossRefGoogle Scholar
  20. 20.
    Keiser J, Utzinger J (2005) Trends in the core literature on tropical medicine: a bibliometric analysis from 1952–2002. Scientometrics 62(3):351–365CrossRefGoogle Scholar
  21. 21.
    Uzun A (2002) National patterns of research output and priorities in renewable energy. Energy Policy 30(2):131–136CrossRefGoogle Scholar
  22. 22.
    Yaoyang X, Boeing WJ (2013) Mapping biofuel field: a bibliometric evaluation of research output. Renew Sustain Energy Rev 28:82–91CrossRefGoogle Scholar
  23. 23.
    Braun T, Schubert AP, Kostoff RN (2000) Growth and trends of fullerene research as reflected in its journal literature. Chem Rev 100(1):23–38CrossRefGoogle Scholar
  24. 24.
    Ivanović D, Fu H, Ho Y (2015) Publications from Serbia in the Science Citation Index Expanded: a bibliometric analysis. Scientometrics 105(1):145–160CrossRefGoogle Scholar
  25. 25.
    Persson O, Danell R, Schneider J (2009) How to use Bibexcel for various types of bibliometric analysis. In: Åström F, Danell R, Larsen B, Schneider JW (eds) Celebrating scholarly communication studies: a Festschrift for Olle Persson at his 60th birthday, vol 5. International Society for Scientometrics and Informetrics, Leuwen, pp 9–24Google Scholar
  26. 26.
    Batagelj V, Mrvar A (2002) Pajek-analysis and visualization of large networks. Lect Notes Comput Sci 2265:77–103MATHGoogle Scholar
  27. 27.
    Murray PM, Moane S, Collins C, Beletskaya T, Thomas OP, Duarte AWF, Nobre FS, Owoyemi IO, Pagnocca FC, Sette LD, McHugh E, Causse E, Pérez-López P, Feijoo G, Moreira MT, Rubiolo J, Leirós M, Botana LM, Pinteus S, Alves C, Horta A, Pedrosa R, Jeffryes C, Agathos SN, Allewaert C, Verween A, Vyverman W, Laptev I, Sineoky S, Bisio A, Manconi R, Ledda F, Marchi M, Pronzato R, Walsh DJ (2013) Sustainable production of biologically active molecules of marine based origin. New Biotechnol 30(6):839–850CrossRefGoogle Scholar
  28. 28.
    Patel A, Arora N, Sartaj K, Pruthi V, Pruthi PA (2016) Sustainable biodiesel production from oleaginous yeasts utilizing hydrolysates of various non-edible lignocellulosic biomasses. Renew Sustain Energy Rev 62:836–855CrossRefGoogle Scholar
  29. 29.
    Mosarof MH, Kalam MA, Masjuki HH, Ashraful AM, Rashed MM, Imdadul HK, Monirul IM (2015) Implementation of palm biodiesel based on economic aspects, performance, emission, and wear characteristics. Energ Convers Manag 105:617–629CrossRefGoogle Scholar
  30. 30.
    Sun D, Yamada Y, Sato S, Ueda W (2016) Glycerol hydrogenolysis into useful C3 chemicals. Appl Catal B 193:75–92CrossRefGoogle Scholar
  31. 31.
    Kartnaller V, Junior II, de Souza AVA, Costa ICR, Rezende MJC, Da Silva JFC, de Souza ROMA (2016) Evaluating the kinetics of the esterification of oleic acid with homo and heterogeneous catalysts using in-line real-time infrared spectroscopy and partial least squares calibration. J Mol Catal B Enzym 123:41–46CrossRefGoogle Scholar
  32. 32.
    Caldeira C, Queirós J, Noshadravan A, Freire F (2016) Incorporating uncertainty in the life cycle assessment of biodiesel from waste cooking oil addressing different collection systems. Resour Conserv Recycl 112:83–92CrossRefGoogle Scholar
  33. 33.
    Huang W, Zhang B, Feng C, Li M, Zhang J (2012) Research trends on nitrate removal: a bibliometric analysis. Desalin Water Treat 50:67–77CrossRefGoogle Scholar
  34. 34.
    Gao W, Guo H (2014) Nitrogen research at watershed scale: a bibliometric analysis during 1959–2011. Scientometrics 99(3):737–753CrossRefGoogle Scholar
  35. 35.
    Michalopoulos A, Falagas ME (2005) A bibliometric analysis of global research production in respiratory medicine. Chest 128:3993–3998CrossRefGoogle Scholar
  36. 36.
    Zheng T, Wang J, Wang Q, Nie C, Smale N, Shi Z, Wang X (2015) A bibliometric analysis of industrial wastewater research: current trends and future prospects. Scientometrics 105(2):863–882CrossRefGoogle Scholar
  37. 37.
    Zhi W, Ji G (2012) Constructed wetlands, 1991–2011: a review of research development, current trends, and future directions. Sci Total Environ 441:19–27CrossRefGoogle Scholar
  38. 38.
    Baskar G, Aiswarya R (2016) Trends in catalytic production of biodiesel from various feedstocks. Renew Sustain Energy Rev 57:496–504CrossRefGoogle Scholar
  39. 39.
    Onoji SE, Iyuke SE, Igbafe AI, Nkazi DB (2016) Rubber seed oil: a potential renewable source of biodiesel for sustainable development in sub-Saharan Africa. Energy Convers Manag 110:125–134CrossRefGoogle Scholar
  40. 40.
    Yee W (2016) Microalgae from the Selenastraceae as emerging candidates for biodiesel production: a mini review. World J Microbiol Biotechnol 32(4):1–11CrossRefGoogle Scholar
  41. 41.
    Rathore V, Newalkar BL, Badoni RP (2016) Processing of vegetable oil for biofuel production through conventional and non-conventional routes. Energy Sustain Dev 31:24–49CrossRefGoogle Scholar
  42. 42.
    Hidalgo P, Ciudad G, Mittelbach M, Navia R (2015) Biodiesel production by direct conversion of Botryococcus braunii lipids: reaction kinetics modelling and optimization. Fuel 153:544–551CrossRefGoogle Scholar
  43. 43.
    Hwang J, Bae C, Gupta T (2016) Application of waste cooking oil (WCO) biodiesel in a compression ignition engine. Fuel 176:20–31CrossRefGoogle Scholar
  44. 44.
    Suh HK, Lee CS (2016) A review on atomization and exhaust emissions of a biodiesel-fueled compression ignition engine. Renew Sustain Energy Rev 58:1601–1620CrossRefGoogle Scholar
  45. 45.
    Dharma S, Masjuki HH, Ong HC, Sebayang AH, Silitonga AS, Kusumo F, Mahlia TMI (2016) Optimization of biodiesel production process for mixed Jatropha curcas–Ceiba pentandra biodiesel using response surface methodology. Energy Convers Manag 115:178–190CrossRefGoogle Scholar
  46. 46.
    Sobrino FH, Monroy CR, Pérez JLH (2011) Biofuels and fossil fuels: life cycle analysis (LCA) optimisation through productive resources maximisation. Renew Sustain Energy Rev 15(6):2621–2628CrossRefGoogle Scholar
  47. 47.
    Jenkins R, Alles C (2011) Field to fuel: developing sustainable biorefineries. Ecol Appl 21(4):1096–1104CrossRefGoogle Scholar
  48. 48.
    Fu H, Wang M, Ho Y (2013) Mapping of drinking water research: a bibliometric analysis of research output during 1992–2011. Sci Total Environ 443:757–765CrossRefGoogle Scholar
  49. 49.
    Hoang NSH, Vinh LX, Hien TT (2016) Biodiesel production from waste shortening oil from instant noodle factories. J Mater Cycles Waste 18(1):93–101CrossRefGoogle Scholar
  50. 50.
    Yousuf A (2012) Biodiesel from lignocellulosic biomass-prospects and challenges. Waste Manag 32(11):2061–2067CrossRefGoogle Scholar
  51. 51.
    Gallagher DL, Phetxumphou K, Smiley E, Dietrich AM (2015) Tale of two isomers: complexities of human odor perception for cis and trans-4-methylcyclohexane methanol from the chemical spill in West Virginia. Environ Sci Technol 49(3):1319–1327CrossRefGoogle Scholar
  52. 52.
    Zhi W, Yuan L, Ji G, Liu Y, Cai Z, Chen X (2015) A bibliometric review on carbon cycling research during 1993–2013. Environ Earth Sci 74(7):6065–6075CrossRefGoogle Scholar
  53. 53.
    Schwartz FW, Fang YC, Parthasarathy S (2005) Patterns of evolution of research strands in the hydrologic sciences. Hydrogeol J 13(1):25–36CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Min Zhang
    • 1
  • Zhen Gao
    • 1
  • Tianlong Zheng
    • 2
  • Yingqun Ma
    • 3
  • Qunhui Wang
    • 1
    • 4
  • Ming Gao
    • 1
  • Xiaohong Sun
    • 5
  1. 1.Department of Environmental EngineeringUniversity of Science and Technology BeijingBeijingChina
  2. 2.Research Center for Eco-Environmental SciencesChinese Academy of SciencesBeijingChina
  3. 3.Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research InstituteNanyang Technological UniversitySingaporeSingapore
  4. 4.Beijing Key Laboratory on Resource-oriented Treatment of Industrial PollutantsBeijingChina
  5. 5.Department of Agro-biotechnology Research CenterBeijing Academy of Agricultural and Forestry SciencesBeijingChina

Personalised recommendations