Advertisement

Journal of Material Cycles and Waste Management

, Volume 20, Issue 1, pp 237–244 | Cite as

Evaluation of the physiology of miniature pig fed Shochu distillery waste using mRNA expression profiling

  • Shiori Miura
  • Junko Takahashi
  • Hitoshi Iwahashi
ORIGINAL ARTICLE

Abstract

Shochu distillery waste is the discarded material generated during Shochu production, and it has been used as feed for livestock. In this study, we evaluated the applicability of Shochu distillery waste as a livestock diet. Shochu distillery waste diet was fed to Clawn miniature pigs. At the end of the dietary period, blood samples were collected for biochemical examination and microarray analysis. No significant differences were observed between the control and Shochu distillery waste treatment groups based on physical and biochemical examination. Gene expression patterns were also similar. In addition, gene profiling of these two groups was compared with those of hyperlipidemia and toxicant model groups. Expression profiling of the two groups was different from those of the hyperlipidemia and toxicant model groups. In conclusion, the Shochu distillery waste diet did not affect pig physiology and it is a suitable substitute for standard feed. Moreover, these results promote the potential for microarray analysis use in the evaluation of food safety.

Keywords

Blood DNA microarray Gene expression Pig Shochu 

Notes

Acknowledgements

The authors wish to thank Okuchi Liquor Co., Ltd. for supplying the SDW, and Junichi Tottori and Takehiro Iwanaga with Japan Farm Co., Ltd. for breeding the animals and collecting the data.

References

  1. 1.
    Hayashi K (2012) Shochu distillery by-products as effective feed. Nihon Danc Chikusan Gakkaihou 55:101–107 (in Japanese) Google Scholar
  2. 2.
    Kawaida H, Fukunaga T, Ueyama S, Matsumoto K, Yokoyama S, Makiuchi K (1989) Research on feeding and management and pork quality of strain pigs and crossbred pigs between strains.8. Bull Kagoshima Prefect Livest Exp Stn 21:59–72 (in Japanese)Google Scholar
  3. 3.
    Kawaida H, Fukunaga T, Ueyama S, Matsumoto K, Yanase M, Horinouchi T (1990) Research on feeding and management and pork quality of strain pigs and crossbred pigs between strains.9. Bull Kagoshima Prefect Livest Exp Stn 22:56–67 (in Japanese)Google Scholar
  4. 4.
    Kawaida H, Fukunaga T, Ueyama S (1991) Research on feeding and management and pork quality of strain pigs and crossbred pigs between strains.10. Bull Kagoshima Prefect Livest Exp Stn 23:75–87 (in Japanese)Google Scholar
  5. 5.
    Mahfudz LKD, Hayashi K, Ikeda M, Hamada K, Ohtsuka A, Tomita Y (1996) The effective use of Shochu Distillery By-product as a source of broiler feed. Jpn Poult Sci 33:1–7CrossRefGoogle Scholar
  6. 6.
    Kamizono T, Nakashima K, Ohtsuka A (2010) Effects of feeding hexane-extracts of a shochu distillery by-product on skeletal muscle protein degradation in broiler chicken. Biosci Biotechnol Biochem 74:92–95. doi: 10.1271/bbb.90587 CrossRefGoogle Scholar
  7. 7.
    Vodicka P, Smetana K, Dvoránková B, Emerick T, Xu YZ, Ourednik J, Ourednik V, Motlík J (2005) The miniature pig as an animal model in biomedical research. Ann N Y Acad Sci 1049:161–171. doi: 10.1196/annals.1334.015 CrossRefGoogle Scholar
  8. 8.
    Gutierrez K, Dicks N, Glanzner WG, Agellon LB, Bordignon V (2015) Efficacy of the porcine species in biomedical research. Front Genet 6:1–9. doi: 10.3389/fgene.2015.00293 CrossRefGoogle Scholar
  9. 9.
    Schook LB, Beever JE, Rogers J, Humphray S, Archibald A, Chardon P, Milan D, Rohrer G, Eversole K (2005) Swine Genome Sequencing Consortium (SGSC): a strategic roadmap for sequencing the pig genome. Comp Funct Genom 6:251–255. doi: 10.1002/cfg.479 CrossRefGoogle Scholar
  10. 10.
    Archibald AL, Bolund L, Churcher C, Fredholm M, Groenen MA, Harlizius B, Lee KT, Milan D, Rogers J, Rothschild MF, Uenishi H, Wang J, Schook LB, Swine Genome Sequencing Consortium (2010) Pig genome sequence–analysis and publication strategy. BMC Genom 11:438. doi: 10.1186/1471-2164-11-438 CrossRefGoogle Scholar
  11. 11.
    Nakanishi Y, Ogawa K, Yanagita K, Yamauchi C (1991) Body measurements and some characteristics of inbred CLAWN miniature pigs. Nihon Yot Gakkaishi 28:211–218. doi: 10.5938/youton.28.211 (in Japanese) CrossRefGoogle Scholar
  12. 12.
    Takahashi J, Misawa M, Iwahashi H (2011) Oligonucleotide microarray analysis of age-related gene expression profiles in miniature pigs. PLoS One 6:1–11. doi: 10.1371/journal.pone.0019761 Google Scholar
  13. 13.
    Williams-Devane CR, Wolf MA, Richard AM (2009) Toward a public toxicogenomics capability for supporting predictive toxicology: survey of current resources and chemical indexing of experiments in GEO and ArrayExpress. Toxicol Sci 109:358–371. doi: 10.1093/toxsci/kfp061 CrossRefGoogle Scholar
  14. 14.
    Pennie W, Pettit SD, Lord PG (2004) Toxicogenomics in risk assessment: an overview of an HESI collaborative research program. Environ Health Perspect 112:417–419CrossRefGoogle Scholar
  15. 15.
    Tong W, Cao X, Harris S, Sun H, Fang H, Fuscoe J, Harris A, Hong H, Xie Q, Perkins R, Shi L, Casciano L (2003) ArrayTrack-supporting toxicogenomic research at the U.S. Food and Drug Administration National Center for Toxicological Research. Environ Health Perspect 111:1819–1826CrossRefGoogle Scholar
  16. 16.
    Fricano MM, Ditewig AC, Jung PM, Liguori MJ, Blomme EA, Yang Y (2011) Global transcriptomic profiling using small volumes of whole blood: a cost-effective method for translational genomic biomarker identification in small animals. Int J Mol Sci 12:2502–2517. doi: 10.3390/ijms12042502 CrossRefGoogle Scholar
  17. 17.
    Umbright C, Sellamuthu R, Li S, Kashon M, Luster M, Joseph P (2010) Blood gene expression markers to detect and distinguish target organ toxicity. Mol Cell Biochem 335:223–234. doi: 10.1007/s11010-009-0272-5 CrossRefGoogle Scholar
  18. 18.
    Bushel PR, Heinloth AN, Li J, Huang L, Chou JW, Boorman GA, Malarkey DE, Houle CD, Ward SM, Wilson RE, Fannin RD, Russo MW, Watkins PB, Tennant RW, Paules RS (2007) Blood gene expression signatures predict exposure levels. Proc Natl Acad Sci U S A 104:18211–18216. doi: 10.1073/pnas.0706987104 CrossRefGoogle Scholar
  19. 19.
    Staratschek-Jox A, Classen S, Gaarz A, Debey-Pascher S, Schultze JL (2009) Blood-based transcriptomics: leukemias and beyond. Expert Rev Mol Diagn 9:271–280. doi: 10.1586/erm.09.9 CrossRefGoogle Scholar
  20. 20.
    Liew C, Ma J, Tang H, Zheng R, Dempsey AA (2006) The peripheral blood transcriptome dynamically reflects system wide biology: a potential diagnostic tool. J Lab Clin Med 147:126–132. doi: 10.1016/j.lab.2005.10.005 CrossRefGoogle Scholar
  21. 21.
    de Hoon MJL, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20:1453–1454. doi: 10.1093/bioinformatics/bth078 CrossRefGoogle Scholar
  22. 22.
    Saldanha AJ (2004) Java Treeview-extensible visualization of microarray data. Bioinformatics 20:3246–3248. doi: 10.1093/bioinformatics/bth349 CrossRefGoogle Scholar
  23. 23.
    Liju VB, Jeena K, Kuttan R (2013) Acute and subchronic toxicity as well as mutagenic evaluation of essential oil from turmeric (Curcuma longa L). Food Chem Toxicol 53:52–61. doi: 10.1016/j.fct.2012.11.027 CrossRefGoogle Scholar
  24. 24.
    Takahashi J, Waki S, Matsumoto R, Odake J, Miyaji T, Tottori J, Iwanaga T, Iwahashi H (2012) Oligonucleotide microarray analysis of dietary-induced hyperlipidemia gene expression profiles in miniature pigs. PLoS One 7:e37581. doi: 10.1371/journal.pone.0037581 CrossRefGoogle Scholar
  25. 25.
    Rippen HE, Lamm SH, Nicoll PG, Cummings L, Howearth G, Thayer D (1996) Occupational health data as a basis for process engineering changes: development of a safe work environment in the sodium azide industry. Int Arch Occup Environ Health 68:459–468CrossRefGoogle Scholar
  26. 26.
    Massie MR, Lapoczka EM, Boggs KD, Stine KE, White GE (2003) Exposure to the metabolic inhibitor sodium azide induces stress protein expression and thermotolerance in the nematode C. elegans. Cell Stress Chaperones 8:1–7. doi: 10.1379/1466-1268(2003)8<1:ETTMIS>2.0.CO;2 CrossRefGoogle Scholar
  27. 27.
    Berndt JD, Callaway NL, Gonzalez-Lima F (2001) Effects of chronic sodium azide on brain and muscle cytochrome oxidase activity: a potential model to investigate environmental contributions to neurodegenerative diseases. J Toxicol Environ Health A 63:67–77. doi: 10.1080/152873901750128380 CrossRefGoogle Scholar
  28. 28.
    Pistol GC, Braicu C, Motiu M, Gras MA, Marin DE, Stancu M, Calin L, Israel-Roming F, Berindan-Neagoe I, Taranu I (2015) Zearalenone mycotoxin affects immune mediators, MAPK signalling molecules, nuclear receptors and genome-wide gene expression in pig spleen. PLoS One 10:e0127503. doi: 10.1371/journal.pone.0127503 CrossRefGoogle Scholar
  29. 29.
    da Costa N, McGillivray C, Bai Q, Wood JD, Evans G, Chang KC (2004) Restriction of dietary energy and protein induces molecular changes in young porcine skeletal muscles. J Nutr 134:2191–2199. doi: 10.0134/9/2191 Google Scholar
  30. 30.
    Moser RJ, Reverter A, Kerr CA, Beh KJ, Lehnert SA (2004) A mixed-model approach for the analysis of cDNA microarray gene expression data from extreme-performing pigs after infection with Actinobacillus pleuropneumoniae. J Anim Sci 82:1261–1271CrossRefGoogle Scholar
  31. 31.
    Niewold TA, Kerstens HHD, van der Meulen J, Smits MA, Hulst MM (2005) Development of a porcine small intestinal cDNA micro-array: characterization and functional analysis of the response to enterotoxigenic E. coli. Vet Immunol Immunopathol 105:317–329. doi: 10.1016/j.vetimm.2005.02.010 CrossRefGoogle Scholar
  32. 32.
    Pena RN, Quintanilla R, Manunza A, Gallardo D, Casellas J, Amills M (2014) Application of the microarray technology to the transcriptional analysis of muscle phenotypes in pigs. Anim Genet 45:311–321. doi: 10.1111/age.12146 CrossRefGoogle Scholar
  33. 33.
    Kawaida H, Hirayama N, Fukunaga T, Ueyama S (2007) Use of shochu distillery as a feed for hogs: Effects of the pipeline feeding system on meat productivity and meat quality of pigs. Mem Fac Fish Kagoshima Univ Special Issue: 8–22 (in Japanese)Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Shiori Miura
    • 1
  • Junko Takahashi
    • 2
  • Hitoshi Iwahashi
    • 1
  1. 1.The United Graduate School of Agricultural ScienceGifu UniversityGifu-ShiJapan
  2. 2.Biomedical Research InstituteNational Institute of Advanced Industrial Science and Technology (AIST)TsukubaJapan

Personalised recommendations