Journal of Material Cycles and Waste Management

, Volume 20, Issue 1, pp 201–213 | Cite as

Distribution of inorganic bromine and metals during co-combustion of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS) wastes containing brominated flame retardants (BFRs) with metallurgical dust

  • Mariusz Grabda
  • Sylwia Oleszek
  • Etsuro Shibata
  • Takashi Nakamura


This study focused on the thermal degradation of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS), containing different brominated flame retardants. The evolved inorganic bromine was utilized for the separation of metals present in electric arc furnace dust (EAFD). The thermal degradation of BrPC generated inorganic gaseous HBr (69%) and condensable Br2 (31%). The bromine evolved from BrHIPS was detected almost entirely in a condensed phase as SbBr3. When mixed with EAFD, the evolved inorganic bromine reacted immediately with the metallic components of zinc and lead, but not with iron. The best bromination efficiencies were obtained during the isothermal heating (80 min at 550 °C) of the mixtures at mass ratios of 6:1 and 9:1 w/w under oxidizing conditions. The achieved brominating rates reached 78 and 81% for zinc and 90 and 94% for lead in 6:1 and 9:1 BrPC:EAFD, respectively, and 47 and 65% for zinc and 67 and 63% for lead in 6:1 and 9:1 BrHIPS:EAFD, respectively. The oxidizing condition favored complete vaporization of the formed bromides.


Polycarbonate and high-impact polystyrene Waste combustion Inorganic bromine utilization Metallurgical dust Metals separation 



This work was supported by a KAKENHI (23246158) under a Grant-in-Aid for Scientific Research (A) and the High Efficiency Rare Elements Extraction Technology Area in the Tohoku Innovation Materials Technology Initiatives for Reconstruction from the Ministry of Education, Culture, Sports, Science and Technology in Japan.


  1. 1.
    Polycarbonate Resin Manufacturing Group (2003) Polycarbonate resin & bisphenol A. Revised 2010
  2. 2.
    Global data (2011) Global polystyrene industry–End use sectors in China driving the demand.
  3. 3.
    Obrecht W, Lambert JP, Happ M, Oppenheimer-Stix Ch, Dunn J, Krüger R (2012) Rubber, 4. Emulsion Rubbers. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim. doi: 10.1002/14356007.o23_o01 Google Scholar
  4. 4.
    Antonakou EV, Kalogiannis KG, Stephanidis SD, Triantafyllidis KS, Lappas AA, Achilias DS (1999) Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS. Waste Manag 34:2487–2493. doi: 10.1016/j.wasman.2014.08.014 CrossRefGoogle Scholar
  5. 5.
    Politou AS, Morterra C, Low JD (1990) Infrared studies of carbons. XII The formation of chars from a polycarbonate. Carbon 28:529–538. doi: 10.1016/0008-6223(90)90049-5 CrossRefGoogle Scholar
  6. 6.
    Alaee M, Arias P, Sjödin A, Bergman Å (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29:683–689. doi: 10.1016/S0160-4120(03)00121-1 CrossRefGoogle Scholar
  7. 7.
    PlasticsEurope (1999) Association of plastics manufacturers.
  8. 8.
    Achilias DS, Antonakou EV (2015) Chemical and thermochemical recycling of polymers from waste electrical and electronic equipment: recycling materials based on environmentally friendly techniques. In: Achilias DS (ed) InTech, pp 306–315. ISBN:978-953-51-2142-8Google Scholar
  9. 9.
    Atonakou EV, Achilias DS (2013) Recent advances in polycarbonate recycling: A review of degradation methods and their mechanisms. Waste Biomass Valorization 4:9–21. doi: 10.1007/s12649-012-9159-x CrossRefGoogle Scholar
  10. 10.
    Yang X, Sun L, Xiang S, Hu S, Su S (2013) Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review. Waste Manag 33:462–473. doi: 10.1016/j.wasman.2012.07.025 CrossRefGoogle Scholar
  11. 11.
    Mitan NMM, Brebu M, Bhaskar T, Muto T, Sakata Y (2007) Individual and simultaneous degradation of brominated high impact polystyrene and brominated acrylonitrile-butadiene-styrene and removal of heteroelements (Br, N, and O) from degradation oil by multiphase catalytic systems. J Mater Cycles Waste 9:56–61. doi: 10.1007/s10163-006-0159-4 CrossRefGoogle Scholar
  12. 12.
    Barontini F, Cozzani V, Marsanich K, Raffa V, Petarca L (2004) An experimental investigation of tetrabromobisphenol A decomposition pathways. J Anal Appl Pyrol 72:41–53. doi: 10.1016/j.jaap.2004.02.003 CrossRefGoogle Scholar
  13. 13.
    Vehlow J, Mark FE (2000) Influence of bromine on metal volatilization in waste combustion. J Mater Cycles Waste 2:89–99. doi: 10.1007/s10163-000-0025-8 Google Scholar
  14. 14.
    Vehlow J, Bergfeldt B, Hunsinger H, Jay K, Seifert H, Wanke T, Mark FE (2000) Thermal treatment of electrical and electronic waste plastics. Waste Manag Res 18:131–140. doi: 10.1034/j.1399-3070.2000.00107.x CrossRefGoogle Scholar
  15. 15.
    Tange L, Drohmann D (2008) Waste electrical and electronic equipment plastics with brominated flame retardants—from legislation to separate treatment—thermal processes. Polym Degrad Stab 88:35–40. doi: 10.1016/j.polymdegradstab.2004.03.025 CrossRefGoogle Scholar
  16. 16.
    Grabda M, Oleszek-Kudlak S, Shibata E, Nakamura T (2009) Studies on bromination and evaporation of zinc oxide during thermal treatment with TBBPA. Environ Sci Technol 43:1205–1210. doi: 10.1021/es802400y CrossRefGoogle Scholar
  17. 17.
    Grabda M, Oleszek-Kudlak S, Shibata E, Nakamura T (2009) Influence of temperature and heating time on bromination of zinc oxide during thermal treatment with TBBPA. Environ Sci Technol 43:8936–8941. doi: 10.1021/es901845m CrossRefGoogle Scholar
  18. 18.
    Grabda M, Oleszek-Kudlak S, ShibataE Nakamura T (2011) Vaporization of zinc during thermal treatment of ZnO with tetrabromobisphenol A (TBBPA). J Hazard Mater 187:473–479. doi: 10.1016/j.jhazmat.2011.01.060 CrossRefGoogle Scholar
  19. 19.
    Oleszek S, Grabda M, Shibata E, Nakamura T (2013) Fate of lead oxide during thermal treatment with tetrabromobisphenol A. J Hazard Mater 261:163–171. doi: 10.1016/j.jhazmat.2013.07.028 CrossRefGoogle Scholar
  20. 20.
    Grabda M, Oleszek-Kudlak S, Shibata E, Nakamura T (2014) Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA. J Hazard Mater 278:25–33. doi: 10.1016/j.jhazmat.2014.05.084 CrossRefGoogle Scholar
  21. 21.
    Leclerc N, Meux E, Lecuire JM (2002) Hydrometallurgical recovering zinc from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride. J Hazard Mater 91:257–270. doi: 10.1016/S0304-3894(01)00394-6 CrossRefGoogle Scholar
  22. 22.
    Rzyman M, Grabda M, Oleszek-Kudlak S, Shibata E, Nakamura T (2010) Studies on bromination and evaporation of antimony oxide during thermal treatment of tetrabromobisphenol A (TBBPA). J Anal Appl Pyrol 88:14–21. doi: 10.1016/j.jaap.2010.02.004 CrossRefGoogle Scholar
  23. 23.
    Lange NA, Forker GM (1967) Handbook of chemistry: a reference volume for all requiring ready access to chemical and physical data used in laboratory work and manufacturing, 10th rev. edition. McGraw-Hill, New York, pp 236–237Google Scholar
  24. 24.
    Puglisi C, Sturiale L, Montaudo G (1999) Thermal decomposition processes in aromatic polycarbonates investigated by mass spectrometry. Macromolecules 32:2194–2203. doi: 10.1021/ma981238z CrossRefGoogle Scholar
  25. 25.
    Oleszek S, Grabda M, Shibata E, Nakamura T (2013) Study of the reactions between tetrabromobisphenol A and PbO and Fe2O3 in inert and oxidizing atmospheres by various thermal methods. Thermochim Acta 566:218–225. doi: 10.1016/j.tca.2013.06.003 CrossRefGoogle Scholar
  26. 26.
    Jakab E, Uddin MA, Bhaskar U, Sakata Y (2003) Thermal decomposition of flame-retarded high impact polystyrene. J Anal Appl Pyrol 68–69:83–99. doi: 10.1016/S0165-2370(03)00075-5 CrossRefGoogle Scholar
  27. 27.
    Jang J, Kim J, Bae JY (2005) Effects of Lewis acid-type transition metal chloride additives on the thermal degradation of ABS. Polym Degrad Stab 88:324–332. doi: 10.1016/j.polymdegradstab.2004.11.008 CrossRefGoogle Scholar
  28. 28.
    Shibata E, Grabda M, Nakamura T (2006) Thermodynamic consideration of the bromination reactions of inorganic compounds. J Jpn Soc Waste Manag 17:361–371Google Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Mariusz Grabda
    • 1
    • 2
  • Sylwia Oleszek
    • 1
    • 2
    • 3
  • Etsuro Shibata
    • 1
  • Takashi Nakamura
    • 1
  1. 1.Institute of Multidisciplinary Research for Advanced Materials (IMRAM)Tohoku UniversitySendaiJapan
  2. 2.Institute of Environmental Engineering of the Polish Academy of SciencesZabrzePoland
  3. 3.Graduate School of Science and EngineeringKagoshima UniversityKagoshimaJapan

Personalised recommendations