Skip to main content
Log in

Distribution of inorganic bromine and metals during co-combustion of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS) wastes containing brominated flame retardants (BFRs) with metallurgical dust

  • ORIGINAL ARTICLE
  • Published:
Journal of Material Cycles and Waste Management Aims and scope Submit manuscript

Abstract

This study focused on the thermal degradation of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS), containing different brominated flame retardants. The evolved inorganic bromine was utilized for the separation of metals present in electric arc furnace dust (EAFD). The thermal degradation of BrPC generated inorganic gaseous HBr (69%) and condensable Br2 (31%). The bromine evolved from BrHIPS was detected almost entirely in a condensed phase as SbBr3. When mixed with EAFD, the evolved inorganic bromine reacted immediately with the metallic components of zinc and lead, but not with iron. The best bromination efficiencies were obtained during the isothermal heating (80 min at 550 °C) of the mixtures at mass ratios of 6:1 and 9:1 w/w under oxidizing conditions. The achieved brominating rates reached 78 and 81% for zinc and 90 and 94% for lead in 6:1 and 9:1 BrPC:EAFD, respectively, and 47 and 65% for zinc and 67 and 63% for lead in 6:1 and 9:1 BrHIPS:EAFD, respectively. The oxidizing condition favored complete vaporization of the formed bromides.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Polycarbonate Resin Manufacturing Group (2003) Polycarbonate resin & bisphenol A. http://www.polycarbo.gr.jp/faq/pdf/faq_en01.pdf. Revised 2010

  2. Global data (2011) Global polystyrene industry–End use sectors in China driving the demand. http://www.researchandmarkets.com/reports/1942391/global_polystyrene_industry_end_use_sectors_in#pos-10

  3. Obrecht W, Lambert JP, Happ M, Oppenheimer-Stix Ch, Dunn J, Krüger R (2012) Rubber, 4. Emulsion Rubbers. In: Ullmann's Encyclopedia of Industrial Chemistry. Wiley-VCH, Weinheim. doi:10.1002/14356007.o23_o01

    Google Scholar 

  4. Antonakou EV, Kalogiannis KG, Stephanidis SD, Triantafyllidis KS, Lappas AA, Achilias DS (1999) Pyrolysis and catalytic pyrolysis as a recycling method of waste CDs originating from polycarbonate and HIPS. Waste Manag 34:2487–2493. doi:10.1016/j.wasman.2014.08.014

    Article  Google Scholar 

  5. Politou AS, Morterra C, Low JD (1990) Infrared studies of carbons. XII The formation of chars from a polycarbonate. Carbon 28:529–538. doi:10.1016/0008-6223(90)90049-5

    Article  Google Scholar 

  6. Alaee M, Arias P, Sjödin A, Bergman Å (2003) An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release. Environ Int 29:683–689. doi:10.1016/S0160-4120(03)00121-1

    Article  Google Scholar 

  7. PlasticsEurope (1999) Association of plastics manufacturers. http://www.plasticseurope.co.uk/what-is-plastic/types-of-plastics/polycarbonate.aspx

  8. Achilias DS, Antonakou EV (2015) Chemical and thermochemical recycling of polymers from waste electrical and electronic equipment: recycling materials based on environmentally friendly techniques. In: Achilias DS (ed) InTech, pp 306–315. ISBN:978-953-51-2142-8

  9. Atonakou EV, Achilias DS (2013) Recent advances in polycarbonate recycling: A review of degradation methods and their mechanisms. Waste Biomass Valorization 4:9–21. doi:10.1007/s12649-012-9159-x

    Article  Google Scholar 

  10. Yang X, Sun L, Xiang S, Hu S, Su S (2013) Pyrolysis and dehalogenation of plastics from waste electrical and electronic equipment (WEEE): a review. Waste Manag 33:462–473. doi:10.1016/j.wasman.2012.07.025

    Article  Google Scholar 

  11. Mitan NMM, Brebu M, Bhaskar T, Muto T, Sakata Y (2007) Individual and simultaneous degradation of brominated high impact polystyrene and brominated acrylonitrile-butadiene-styrene and removal of heteroelements (Br, N, and O) from degradation oil by multiphase catalytic systems. J Mater Cycles Waste 9:56–61. doi:10.1007/s10163-006-0159-4

    Article  Google Scholar 

  12. Barontini F, Cozzani V, Marsanich K, Raffa V, Petarca L (2004) An experimental investigation of tetrabromobisphenol A decomposition pathways. J Anal Appl Pyrol 72:41–53. doi:10.1016/j.jaap.2004.02.003

    Article  Google Scholar 

  13. Vehlow J, Mark FE (2000) Influence of bromine on metal volatilization in waste combustion. J Mater Cycles Waste 2:89–99. doi:10.1007/s10163-000-0025-8

    Google Scholar 

  14. Vehlow J, Bergfeldt B, Hunsinger H, Jay K, Seifert H, Wanke T, Mark FE (2000) Thermal treatment of electrical and electronic waste plastics. Waste Manag Res 18:131–140. doi:10.1034/j.1399-3070.2000.00107.x

    Article  Google Scholar 

  15. Tange L, Drohmann D (2008) Waste electrical and electronic equipment plastics with brominated flame retardants—from legislation to separate treatment—thermal processes. Polym Degrad Stab 88:35–40. doi:10.1016/j.polymdegradstab.2004.03.025

    Article  Google Scholar 

  16. Grabda M, Oleszek-Kudlak S, Shibata E, Nakamura T (2009) Studies on bromination and evaporation of zinc oxide during thermal treatment with TBBPA. Environ Sci Technol 43:1205–1210. doi:10.1021/es802400y

    Article  Google Scholar 

  17. Grabda M, Oleszek-Kudlak S, Shibata E, Nakamura T (2009) Influence of temperature and heating time on bromination of zinc oxide during thermal treatment with TBBPA. Environ Sci Technol 43:8936–8941. doi:10.1021/es901845m

    Article  Google Scholar 

  18. Grabda M, Oleszek-Kudlak S, ShibataE Nakamura T (2011) Vaporization of zinc during thermal treatment of ZnO with tetrabromobisphenol A (TBBPA). J Hazard Mater 187:473–479. doi:10.1016/j.jhazmat.2011.01.060

    Article  Google Scholar 

  19. Oleszek S, Grabda M, Shibata E, Nakamura T (2013) Fate of lead oxide during thermal treatment with tetrabromobisphenol A. J Hazard Mater 261:163–171. doi:10.1016/j.jhazmat.2013.07.028

    Article  Google Scholar 

  20. Grabda M, Oleszek-Kudlak S, Shibata E, Nakamura T (2014) Study on simultaneous recycling of EAF dust and plastic waste containing TBBPA. J Hazard Mater 278:25–33. doi:10.1016/j.jhazmat.2014.05.084

    Article  Google Scholar 

  21. Leclerc N, Meux E, Lecuire JM (2002) Hydrometallurgical recovering zinc from electric arc furnace dust using mononitrilotriacetate anion and hexahydrated ferric chloride. J Hazard Mater 91:257–270. doi:10.1016/S0304-3894(01)00394-6

    Article  Google Scholar 

  22. Rzyman M, Grabda M, Oleszek-Kudlak S, Shibata E, Nakamura T (2010) Studies on bromination and evaporation of antimony oxide during thermal treatment of tetrabromobisphenol A (TBBPA). J Anal Appl Pyrol 88:14–21. doi:10.1016/j.jaap.2010.02.004

    Article  Google Scholar 

  23. Lange NA, Forker GM (1967) Handbook of chemistry: a reference volume for all requiring ready access to chemical and physical data used in laboratory work and manufacturing, 10th rev. edition. McGraw-Hill, New York, pp 236–237

    Google Scholar 

  24. Puglisi C, Sturiale L, Montaudo G (1999) Thermal decomposition processes in aromatic polycarbonates investigated by mass spectrometry. Macromolecules 32:2194–2203. doi:10.1021/ma981238z

    Article  Google Scholar 

  25. Oleszek S, Grabda M, Shibata E, Nakamura T (2013) Study of the reactions between tetrabromobisphenol A and PbO and Fe2O3 in inert and oxidizing atmospheres by various thermal methods. Thermochim Acta 566:218–225. doi:10.1016/j.tca.2013.06.003

    Article  Google Scholar 

  26. Jakab E, Uddin MA, Bhaskar U, Sakata Y (2003) Thermal decomposition of flame-retarded high impact polystyrene. J Anal Appl Pyrol 68–69:83–99. doi:10.1016/S0165-2370(03)00075-5

    Article  Google Scholar 

  27. Jang J, Kim J, Bae JY (2005) Effects of Lewis acid-type transition metal chloride additives on the thermal degradation of ABS. Polym Degrad Stab 88:324–332. doi:10.1016/j.polymdegradstab.2004.11.008

    Article  Google Scholar 

  28. Shibata E, Grabda M, Nakamura T (2006) Thermodynamic consideration of the bromination reactions of inorganic compounds. J Jpn Soc Waste Manag 17:361–371

    Google Scholar 

Download references

Acknowledgements

This work was supported by a KAKENHI (23246158) under a Grant-in-Aid for Scientific Research (A) and the High Efficiency Rare Elements Extraction Technology Area in the Tohoku Innovation Materials Technology Initiatives for Reconstruction from the Ministry of Education, Culture, Sports, Science and Technology in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sylwia Oleszek.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grabda, M., Oleszek, S., Shibata, E. et al. Distribution of inorganic bromine and metals during co-combustion of polycarbonate (BrPC) and high-impact polystyrene (BrHIPS) wastes containing brominated flame retardants (BFRs) with metallurgical dust. J Mater Cycles Waste Manag 20, 201–213 (2018). https://doi.org/10.1007/s10163-016-0565-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10163-016-0565-1

Keywords

Navigation