Journal of Material Cycles and Waste Management

, Volume 20, Issue 1, pp 176–184 | Cite as

Analysis of branched-chain fatty acids in humic substances as indices for compost maturity by pyrolysis–gas chromatography/mass spectrometry with tetramethylammonium hydroxide (TMAH-py–GC/MS)

  • Masami Fukushima
  • Xuefei Tu
  • Apichaya Aneksampant
  • Atsushi Tanaka
ORIGINAL ARTICLE

Abstract

Parameters that affect the degree of humification for humic substances (HSs) are deeply related to the maturity of the compost. In general, the matured composts contain HSs with a higher degree of humification. In addition, microbial activities during composting are also one of the indices for compost maturation. Branched-chain fatty acids are metabolites as the result of microbial activities in a soil environment. Such branched-chain fatty acids, regarded as humic precursors, are incorporated into HSs during the composting process. To determine whether branched-chain fatty acids in HSs can be used as biomarkers during composting processes or not, HSs were extracted from three types of composts with the different maturation, and the branched-chain fatty acids in the HSs were analyzed by pyrolysis–gas chromatography/mass spectrometry with tetramethylammonium hydroxide (TMAH-py–GC/MS). HSs with a higher degree of humification (higher aromaticity and lower molecular weight) contained higher levels of branched-chain fatty acids. These results show that branched-chain fatty acids in HSs from matured compost samples can be used as biomarkers, which indicate the history of microbial activities during overall composting process.

Keywords

Composting Humic substances Humification TMAH-py–GC/MS Branched-chain fatty acids 

Notes

Acknowledgements

This study was supported by Grants-in-Aid for Regional R&D Proposal-Based Program from Northern Advancement Center for Science and Technology of Hokkaido (Project Number: H27H-3-5) and by the Takahashi Industrial and Economic Research Foundation (Project Number: 03-028-241).

Supplementary material

10163_2016_559_MOESM1_ESM.docx (106 kb)
Supplementary material 1 (DOCX 106 kb)

References

  1. 1.
    Ju M, Bae S-J, Kim JY, Lee D-H (2016) Solid recovery rate of food waste recycling in South Korea. J Mater Cycles Waste 18:419–426. doi: 10.1007/s10163-015-0464-x CrossRefGoogle Scholar
  2. 2.
    Cozzolino V, Di Meo V, Monda H, Spaccini R, Piccolo A (2016) The molecular characteristics of compost affect plant growth, arbuscular mycorrhizal fungi, and soil microbial community composition. Biol Fertil Soils 52:15–29. doi: 10.1007/s00374-015-1046-8 CrossRefGoogle Scholar
  3. 3.
    Deepesh V, Verma VK, Suma K, Ajay S, Gnanavelu A, Madhusudanan M (2016) Evaluation of an organic soil amendment generated from municipal solid waste seeded with activated sewage sludge. J Mater Cycles Waste 18:273–286. doi: 10.1007/s10163-014-0329-8 CrossRefGoogle Scholar
  4. 4.
    Yamamoto M, Fukushima M (2014) Humification index of composts originating from three types of woody biomass. J Mater Cycles Waste 16:731–738. doi: 10.1007/s10163-013-0211-0 CrossRefGoogle Scholar
  5. 5.
    Fukushima M, Yamamoto K, Ohtsuka K, Aramaki T, Komai T, Ueda S, Horiya S (2009) Effects of the maturity of wood-waste compost on the structural features of humic acids. Bioresour Technol 100:791–797. doi: 10.1016/j.biortech.2008.06.030 CrossRefGoogle Scholar
  6. 6.
    Tan KH (2003) Humic matter in soil and the environment. Principals and controversies. Dekker, New York, pp 75–126CrossRefGoogle Scholar
  7. 7.
    Steger K, Sjögren ÅM, Jarvis Å, Jansson JK, Sundh I (2007) Development of compost maturity and Actinobacteria populations during full-scale composting of organic household waste. J Appl Microbiol 103:487–498. doi: 10.1111/j.1365-2672.2006.03271.x CrossRefGoogle Scholar
  8. 8.
    Castillo JM, Romero E, Nogales R (2013) Dynamics of microbial communities related to biochemical parameters during vermicomposting and maturation of agroindustrial lignocelluloses wastes. Bioresour Technol 146:345–354. doi: 10.1016/j.biortech.2013.07.093 CrossRefGoogle Scholar
  9. 9.
    Cheng C-L, Chang J-S (2011) Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresour Technol 102:8628–8634. doi: 10.1016/j.biortech.2011.03.053 CrossRefGoogle Scholar
  10. 10.
    Fukushima M, Miura A, Sasaki M, Izumo K (2009) Effect of an allophanic soil on humification reactions between catechol and glycine: spectroscopic investigations of reaction products. J Mol Struct 917:142–147. doi: 10.1016/j.molstruc.2008.07.006 CrossRefGoogle Scholar
  11. 11.
    Miura A, Okabe R, Izumo K, Fukushima M (2009) Influence of the physicochemical properties of clay minerals on the degree of darkening via polycondensation reactions between catechol and glycine. Appl Clay Sci 46:277–282. doi: 10.1016/j.clay.2009.08.017 CrossRefGoogle Scholar
  12. 12.
    Miura A, Fukuchi S, Okabe R, Fukushima M, Sasaki M, Sato T (2011) Effect of different fractions of weathered pumice in the formation of humic-like substances. Clay Miner 46:637–648. doi: 10.1180/claymin.2011.046.4.637 CrossRefGoogle Scholar
  13. 13.
    Shindo H, Huang P (1982) Role of Mn(IV) in abiotic formation of humic substances in the environment. Nature 298:363–365. doi: 10.1038/298363a0 CrossRefGoogle Scholar
  14. 14.
    Brunetti G, Senesi N, Plaza C (2008) Organic matter humification in olive oil mill wastewater by abiotic catalysis with manganese(IV) oxide. Bioresour Technol 99:8528–8531. doi: 10.1016/j.biortech.2008.02.047 CrossRefGoogle Scholar
  15. 15.
    Kanno H, Tachibana N, Fukushima M (2011) Optimization of conditions for thermal treatment of rice bran using an accelerator including an organo-iron compound. Bioresour Technol 102:3430–3436. doi: 10.1016/j.biortech.2010.10.039 CrossRefGoogle Scholar
  16. 16.
    Gómez-Brandón M, Lazcano C, Domínguez J (2008) The evaluation of stability and maturity during the composting of cattle manure. Chemosphere 70:436–444. doi: 10.1016/j.chemosphere.2007.06.065 CrossRefGoogle Scholar
  17. 17.
    Sen B, Chandra TS (2009) Do earthworms affect dynamics of functional response and genetic structure of microbial community in a lab-scale composting system? Bioresour Technol 100:804–811. doi: 10.1016/j.biortech.2008.07.047 CrossRefGoogle Scholar
  18. 18.
    Villar I, Alves D, Pérez-Díaz D, Mato S (2016) Changes in microbial dynamics during vermicomposting of fresh and composted sewage sludge. Waste Manag 48:409–417. doi: 10.1016/j.wasman.2015.10.011 CrossRefGoogle Scholar
  19. 19.
    Tiquia SM (2010) Reduction of compost phytotoxicity during the process of decomposition. Chemosphere 79:506–512. doi: 10.1016/j.chemosphere.2010.02.040 CrossRefGoogle Scholar
  20. 20.
    Madigan MT, Martinko JM, Parker J (2000) Brock biology of microorganisms, 9th edn. Prentice Hall International Inc, New Jersey, p 133Google Scholar
  21. 21.
    Orlov DS (1992) Humic substances of soils and general theory of humification. Russian Translations Series 111, Moscow University Press, Moscow, Russia, pp 8–49Google Scholar
  22. 22.
    Kaneda T (1991) Iso- and anteiso-fatty acids in bacteria: biosynthesis, function, and taxonomic significance. Microbiol Rev 55:288–302Google Scholar
  23. 23.
    Amir S, Hafidi M, Lemee L, Merlina G, Guiresse M, Pinelli E, Revel J-C, Bailly J-R, Ambles A (2006) Structural characterization of humic acids, extracted from sewage sludge during composting, by thermochemolysis-gas chromatography-mass spectrometry. Process Biochem 41:410–422. doi: 10.1016/j.procbio.2005.07.005 CrossRefGoogle Scholar
  24. 24.
    Martinetz-Balmori D, Olivares FL, Spaccini R, Aguiar KP, Araújo MF, Aguiar NO, Guridi F, Canellas LP (2013) Molecular characteristics of vermicompost and their relationship to preservation of inoculated nitrogen-fixing bacteria. J Anal Appl Pyrolysis 104:540–550. doi: 10.1016/j.jaap.2013.05.015 CrossRefGoogle Scholar
  25. 25.
    Fukushima M, Yamamoto M, Komai T, Yamamoto K (2009) Studies of structural alterations of humic acids from conifer bark residue during composting by pyrolysis-gas chromatography/mass spectrometry using tetramethylammonium hydroxide (TMAH-py–GC/MS). J Anal Appl Pyrolysis 86:200–206. doi: 10.1016/j.jaap.2009.06.005 CrossRefGoogle Scholar
  26. 26.
    Fujisawa N, Fukushima M, Yamamoto M, Iwai H, Komai T, Kawabe Y, Liu D (2012) Structural alterations of humic acid fractions in a steel slag-compost fertilizer during fertilization. Analysis by pyrolysis/methylation-gas chromatography/mass spectrometry. J Anal Appl Pyrolysis 95:126–133. doi: 10.1016/j.jaap.2012.01.017 CrossRefGoogle Scholar
  27. 27.
    Fukushima M, Furubayashi K, Fujisawa N, Takeuchi M, Komai T, Ootsuka K, Yamamoto M, Kawabe Y, Horiya S (2011) Characterization of humic acids in sediments from dam reservoirs by pyrolysis-gas chromatography/mass spectrometry using tetramethylammonium hydroxide: influence of the structural features of humic acids on iron(II) binding capacity. J Anal Appl Pyrolysis 91:323–331. doi: 10.1016/j.jaap.2011.03.008 CrossRefGoogle Scholar
  28. 28.
    Qi G, Yue D, Fukushima M, Fukuchi S, Nishimoto R, Nie Y (2012) Enhanced humification by carbonated basic oxygen furnace steel slag—II. Process characterization and the role of inorganic components in the formation of humic-like substances. Bioresource Technol 114:637–643. doi: 10.1016/j.biortech.2012.03.064 CrossRefGoogle Scholar
  29. 29.
    Qi G, Yue D, Fukushima M, Fukuchi S, Nie Y (2012) Enhanced humification by carbonated basic oxygen furnace steel slag—I. Characterization of humic-like acids produced from humic precursors. Bioresource Technol 104:497–502. doi: 10.1016/j.biortech.2011.11.021 CrossRefGoogle Scholar
  30. 30.
    Nishimoto R, Fukuchi S, Qi S, Fukushima M, Sato T (2013) Effects of surface Fe(III) oxides in a steel slag on the formation of humic-like dark-colored polymers by the polycondensation of humic precursors. Colloid Surf A 418:117–123. doi: 10.1016/j.colsurfa.2012.11.032 CrossRefGoogle Scholar
  31. 31.
    Tu X, Aneksampant A, Kobayashi S, Tanaka A, Nishimoto R, Fukushima M (2016) Advantages and risks of using steel slag in preparing composts from raw organic waste. J Environ Sci Heal B in press. doi: 10.1080/03601234.2016.1224701 Google Scholar
  32. 32.
    Yabuta H, Fukushima M, Kawasaki M, Tanaka F, Kobayashi T, Tatsumi K (2008) Multiple polar components in poorly-humified humic acids stabilizing free radicals: carboxyl and nitrogen-containing carbons. Org Geochem 39:1313–1335. doi: 10.1016/j.orggeochem.2008.05.007 CrossRefGoogle Scholar
  33. 33.
    Fukushima M, Tanabe Y, Morimoto K, Tatsumi T (2007) Role of humic acid fraction with higher aromaticity in enhancing the activity of a biomimetic catalyst, tetra(p-sulfonatophenyl)porphineiron(III). Biomacromolecules 8:386–391. doi: 10.1021/bm060829r CrossRefGoogle Scholar
  34. 34.
    Kumada K (1955) Absorption spectra of humic acids. Soil Plant Food 1:29–30CrossRefGoogle Scholar
  35. 35.
    Wang Z-D, Pant BC, Langford CH (1990) Spectroscopic and structural characterization of a Laurentian fulvic acid: notes on origin of color. Anal Chim Acta 232:43–49. doi: 10.1016/S0003-2670(00)81224-6 CrossRefGoogle Scholar
  36. 36.
    Piccolo A (2002) The supramolecular structure of humic substances: a novel understanding of humus chemistry and implications in soil science. Adv Agron 75:57–134. doi: 10.1016/S0065-2113(02)75003-7 CrossRefGoogle Scholar
  37. 37.
    Piccolo A (2001) The supramolecular structure of humic substances. Soil Sci 166:810–832. doi: 10.1097/00010694-200111000-00007 CrossRefGoogle Scholar
  38. 38.
    Hsu P-H, Hatcher PG (2005) New evidence for covalent coupling of peptides to humic acids based on 2D NMR spectroscopy: a means for preservation. Geochim Cosmochim Acta 69:4521–4533. doi: 10.1016/j.gca.2005.05.005 CrossRefGoogle Scholar
  39. 39.
    Kanno H, Tachibana N, Yonaiyama J, Fukushima M (2012) Thermal treatment of rice bran by portion-wise addition in the presence of an organo-iron catalyst. J Mater Cycles Waste 14:139–145. doi: 10.1007/s10163-012-0049-x CrossRefGoogle Scholar

Copyright information

© Springer Japan 2016

Authors and Affiliations

  • Masami Fukushima
    • 1
  • Xuefei Tu
    • 1
  • Apichaya Aneksampant
    • 1
  • Atsushi Tanaka
    • 1
  1. 1.Laboratory of Chemical Resources, Division of Sustainable Resources Engineering, Graduate School of EngineeringHokkaido UniversitySapporoJapan

Personalised recommendations