Residual Hair Cell Responses in Electric-Acoustic Stimulation Cochlear Implant Users with Complete Loss of Acoustic Hearing After Implantation

Abstract

Changes in cochlear implant (CI) design and surgical techniques have enabled the preservation of residual acoustic hearing in the implanted ear. While most Nucleus Hybrid L24 CI users retain significant acoustic hearing years after surgery, 6–17 % experience a complete loss of acoustic hearing (Roland et al. Laryngoscope. 126(1):175-81. (2016), Laryngoscope. 128(8):1939-1945 (2018); Scheperle et al. Hear Res. 350:45-57 (2017)). Electrocochleography (ECoG) enables non-invasive monitoring of peripheral auditory function and may provide insight into the pathophysiology of hearing loss. The ECoG response is evoked using an acoustic stimulus and includes contributions from the hair cells (cochlear microphonic—CM) as well as the auditory nerve (auditory nerve neurophonic—ANN). Seven Hybrid L24 CI users with complete loss of residual hearing months after surgery underwent ECoG measures before and after loss of hearing. While significant reductions in CMs were evident after hearing loss, all participants had measurable CMs despite having no measurable acoustic hearing. None retained measurable ANNs. Given histological data suggesting stable hair cell and neural counts after hearing loss (e.g., Quesnel et al. Hear Res. 333:225-234. (2016)), the loss of ECoG and audiometric hearing may reflect reduced synaptic input. This is consistent with the theory that residual CM responses coupled with little to no ANN responses reflect a “disconnect” between hair cells and auditory nerve fibers (Fontenot et al. Ear Hear. 40(3):577-591. 2019). This “disconnection” may prevent proper encoding of auditory stimulation at higher auditory pathways, leading to a lack of audiometric responses, even in the presence of viable cochlear hair cells.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Abbas PJ, Tejani VD, Scheperle RA, Brown CJ (2017) Using neural response telemetry to monitor physiological responses to acoustic stimulation in hybrid cochlear implant users. Ear Hear. 38(4):409–425. https://doi.org/10.1097/AUD.0000000000000400

  2. Adunka OF, Pillsbury HC, Buchman CA (2010) Minimizing intracochlear trauma during cochlear implantation. Adv Otorhinolaryngol. 67:96–107. https://doi.org/10.1159/000262601

    Article  PubMed  Google Scholar 

  3. Aran J-M, Charlet de Sauvage R (1976) Clinical value of cochlear microphonic recordings. In: Ruben RJ, Elberling C, Salomon G (eds) Electrocochleography. University Park Press, Baltimore, MD, p 55e65

    Google Scholar 

  4. Başkent D, Shannon RV (2004) Frequency-place compression and expansion in cochlear implant listeners. J Acoust Soc Am. 116(5):3130–3140. https://doi.org/10.1121/1.1804627

    Article  PubMed  Google Scholar 

  5. Başkent D, Shannon RV (2005) Interactions between cochlear implant electrode insertion depth and frequency-place mapping. J Acoust Soc Am. 117(3 Pt 1):1405–1416. https://doi.org/10.1121/1.1856273

    Article  PubMed  Google Scholar 

  6. Briggs RJ, Tykocinski M, Xu J, Risi F, Svehla M, Cowan R, Stover T, Erfurt P, Lenarz T (2006) Comparison of round window and cochleostomy approaches with a prototype hearing preservation electrode. Audiol. Neuro. Otol. 42e48. https://doi.org/10.1159/000095613

  7. Choi C-H, Oghalai JS (2005) Predicting the effect of post-implant cochlear fibrosis on residual hearing. Hear Res. 205(1-2):193–200. https://doi.org/10.1016/j.heares.2005.03.018

    Article  PubMed  PubMed Central  Google Scholar 

  8. Choi J, Payne MR, Campbell LJ, Bester CW, Newbold C, Eastwood H, O'Leary SJ (2017) Electrode impedance fluctuations as a biomarker for inner ear pathology after cochlear implantation. Otol Neurotol. 38(10):1433–1439. https://doi.org/10.1097/MAO.0000000000001589

  9. Choudhury B, Fitzpatrick DC, Buchman CA, Wei BP, Dillon MT, He S, Adunka OF (2012) Intraoperative round window recordings to acoustic stimuli from cochlear implant patients. Otol Neurotol. 33(9):1507–1515. https://doi.org/10.1097/MAO.0b013e31826dbc80

    Article  PubMed  PubMed Central  Google Scholar 

  10. Driscoll CL, Carlson ML, Fama AF, Lane JI (2011) Evaluation of the Hybrid-L24 electrode using microcomputed tomography. Laryngoscope 121(7):e1508–e1516. https://doi.org/10.1002/lary.21837

  11. Dunn CC, Oleson J, Parkinson A, Hansen MR, Gantz BJ (2020) Nucleus hybrid S12: multicenter clinical trial results. Laryngoscope. 130(10):E548–E558. https://doi.org/10.1002/lary.28628

  12. Dymond AM (1976) Characteristics of the metal-tissue interface of stimulation electrodes. IEEE Trans Biomed Eng. 23(4):274–280. https://doi.org/10.1109/tbme.1976.324585

    CAS  Article  PubMed  Google Scholar 

  13. Eggermont JJ (2017) Ups and Downs in 75 Years of Electrocochleography. Front Syst Neurosci. 11:2. https://doi.org/10.3389/fnsys.2017.00002

    Article  PubMed  PubMed Central  Google Scholar 

  14. Eshraghi AA, Gupta C, Van De Water TR, Bohorquez JE, Garnham C, Bas E, Talamo VM (2013) Molecular mechanisms involved in cochlear implantation trauma and the protection of hearing and auditory sensory cells by inhibition of c-Jun-N-terminal kinase signaling. Laryngoscope. 123 Suppl 1:S1–14. https://doi.org/10.1002/lary.23902

  15. Fitzpatrick DC, Campbell AP, Choudhury B, Dillon MT, Forgues M, Buchman CA, Adunka OF (2014) Round window electrocochleography just before cochlear implantation: relationship to word recognition outcomes in adults. Otol Neurotol 35(1):64–71. https://doi.org/10.1097/MAO.0000000000000219

    Article  PubMed  PubMed Central  Google Scholar 

  16. Foggia MJ, Quevedo RV, Hansen MR (2019) Intracochlear fibrosis and the foreign body response to cochlear implant biomaterials. Laryngoscope Investig Otolaryngol 4(6):678–683. https://doi.org/10.1002/lio2.329

    Article  PubMed  PubMed Central  Google Scholar 

  17. Fontenot TE, Giardina CK, Dillon M, Rooth MA, Teagle HF, Park LR, Brown KD, Adunka OF, Buchman CA, Pillsbury HC, Fitzpatrick DC (2019) Residual cochlear function in adults and children receiving cochlear implants: correlations with speech perception outcomes. Ear Hear. 40(3):577–591. https://doi.org/10.1097/AUD.0000000000000630

  18. Forgues M, Koehn HA, Dunnon AK, Pulver SH, Buchman CA, Adunka OF, Fitzpatrick DC (2014) Distinguishing hair cell from neural potentials recorded at the round window. J Neurophysiol. 111(3):580–593. https://doi.org/10.1152/jn.00446.2013

    Article  PubMed  Google Scholar 

  19. Formeister E, McClellan JH, Merwin WH 3rd, Iseli CE, Calloway NH, Teagle HF, Buchman CA, Adunka OF, Fitzpatrick DC (2015) Intraoperative round window electrocochleography and speech perception outcomes in pediatric cochlear implant recipients. Ear Hear. 36(2):249–260. https://doi.org/10.1097/AUD.0000000000000106

    Article  PubMed  Google Scholar 

  20. Gantz BJ, Dunn CC, Oleson J, Hansen MR, Parkinson A, Turner C (2016) Multicenter clinical trial of the Nucleus hybrid S8 cochlear implant: Final outcomes. Laryngoscope. 126:962–973. https://doi.org/10.1002/lary.25572

    Article  PubMed  PubMed Central  Google Scholar 

  21. Gantz BJ, Dunn CC, Oleson J, Hansen MR (2018) Acoustic plus electric speech processing: long-term results. Laryngoscope. 128(2):473–481. https://doi.org/10.1002/lary.26669

  22. Helbig S, Van de Heyning P, Kiefer J, Baumann U, Kleine-Punte A, Brockmeier H, Anderson I, Gstoettner W (2011) Combined electric acoustic stimulation with the PULSARCI100 implant system using the FLEXEAS electrode array. Acta Otolaryngol. 131(6):585–595. https://doi.org/10.3109/00016489.2010.544327

    Article  PubMed  Google Scholar 

  23. Henry KR (1995) Auditory nerve neurophonic recorded from the round window of the Mongolian gerbil. Hear Res. 90(1-2):176–184. https://doi.org/10.1016/0378-5955(95)00162-6

    CAS  Article  PubMed  Google Scholar 

  24. Kim JS, Tejani VD, Abbas PJ, Brown CJ (2018) Postoperative electrocochleography from hybrid cochlear implant users: an alternative analysis procedure. Hear Res. 370:304–315. https://doi.org/10.1016/j.heares.2018.10.016

  25. Koka K, Saoji AA, Litvak LM (2017) Electrocochleography in cochlear implant recipients with residual hearing: comparison with audiometric thresholds. Ear Hear. 38(3):e161–e167. https://doi.org/10.1097/AUD.0000000000000385

  26. Kopelovich JC, Reiss LA, Etler CP, Xu L, Bertroche JT, Gantz BJ, Hansen MR (2015) Hearing loss after activation of hearing preservation cochlear implants might be related to afferent cochlear innervation injury. Otol Neurotol. 36(6):1035–1044. https://doi.org/10.1097/MAO.0000000000000754

  27. Landsberger DM, Svrakic M, Roland JT Jr, Svirsky M (2015) The relationship between insertion angles, default frequency allocations, and spiral ganglion place pitch in cochlear implants. Ear Hear. 36(5):e207–e213. https://doi.org/10.1097/AUD.0000000000000163

  28. Lenarz T, Stover T, Buechner A, Paasche G, Briggs R, Risi F, Pesch J, Battmer RD (2006) Temporal bone results and hearing preservation with a new straight electrode. Audiol. Neuro. Otol. 11 (Suppl. 1), 34e41. https://doi.org/10.1159/000095612

  29. Lenarz T, James C, Cuda D, Fitzgerald O'Connor A, Frachet B, Frijns JH, Klenzner T, Laszig R, Manrique M, Marx M, Merkus P, Mylanus EA, Offeciers E, Pesch J, Ramos-Macias A, Robier A, Sterkers O, Uziel A (2013) European multi-centre study of the Nucleus Hybrid L24 cochlear implant. Int J Audiol. 52(12):838–848. https://doi.org/10.3109/14992027.2013.802032

    Article  PubMed  Google Scholar 

  30. Li Q, Lu T, Zhang C, Hansen MR, Li S (2020) Electrical stimulation induces synaptic changes in the peripheral auditory system. J Comp Neurol. 528(6):893–905. https://doi.org/10.1002/cne.24802

    Article  PubMed  Google Scholar 

  31. Lichtenhan JT, Cooper NP, Guinan JJ Jr (2013) A new auditory threshold estimation technique for low frequencies: Proof of concept. Ear Hear. 34(1):42–51. https://doi.org/10.1097/AUD.0b013e31825f9bd3

    Article  PubMed  PubMed Central  Google Scholar 

  32. Mouney DF, Berlin CI, Cullen JK Jr, Hughes LF (1978) Changes in human eighth nerve action potential as a function of stimulation rate. Arch Otolaryngol. 104(10):551–554. https://doi.org/10.1001/archotol.1978.00790100005001

  33. O'Leary SJ, Monksfield P, Kel G, Connolly T, Souter MA, Chang A, Marovic P, O'Leary JS, Richardson R, Eastwood H (2013) Relations between cochlear histopathology and hearing loss in experimental cochlear implantation. Hear Res. 298:27–35. https://doi.org/10.1016/j.heares.2013.01.012

    CAS  Article  PubMed  Google Scholar 

  34. Pappa AK, Hutson KA, Scott WC, Wilson JD, Fox KE, Masood MM, Giardina CK, Pulver SH, Grana GD, Askew C, Fitzpatrick DC (2019) Hair cell and neural contributions to the cochlear summating potential. J Neurophysiol. 121(6):2163–2180. https://doi.org/10.1152/jn.00006.2019

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Pillsbury HC 3rd, Dillon MT, Buchman CA, Staecker H, Prentiss SM, Ruckenstein MJ, Bigelow DC, Telischi FF, Martinez DM, Runge CL, Friedland DR, Blevins NH, Larky JB, Alexiades G, Kaylie DM, Roland PS, Miyamoto RT, Backous DD, Warren FM, El-Kashlan HK, Slager HK, Reyes C, Racey AI, Adunka OF (2018) Multicenter US clinical trial with an Electric-Acoustic Stimulation (EAS) system in adults: final outcomes. Otol Neurotol. 39(3):299–305. https://doi.org/10.1097/MAO.0000000000001691

  36. Quesnel AM, Nakajima HH, Rosowski JJ, Hansen MR, Gantz BJ, Nadol JB Jr (2016) Delayed loss of hearing after hearing preservation cochlear implantation: Human temporal bone pathology and implications for etiology. Hear Res. 333:225–234. https://doi.org/10.1016/j.heares.2015.08.018

    Article  PubMed  Google Scholar 

  37. Rauch SD, Halpin CF, Antonelli PJ, Babu S, Carey JP, Gantz BJ, Goebel JA, Hammerschlag PE, Harris JP, Isaacson B, Lee D, Linstrom CJ, Parnes LS, Shi H, Slattery WH, Telian SA, Vrabec JT, Reda DJ (2011) Oral vs intratympanic corticosteroid therapy for idiopathic sudden sensorineural hearing loss: a randomized trial. JAMA. 305(20):2071–2079. https://doi.org/10.1001/jama.2011.679

    CAS  Article  PubMed  Google Scholar 

  38. Reiss LA, Stark G, Nguyen-Huynh AT, Spear KA, Zhang H, Tanaka C, Li H (2015) Morphological correlates of hearing loss after cochlear implantation and electro-acoustic stimulation in a hearing-impaired Guinea pig model. Hear Res. 327:163–174. https://doi.org/10.1016/j.heares.2015.06.007

    Article  PubMed  PubMed Central  Google Scholar 

  39. Roland JT Jr, Gantz BJ, Waltzman SB, Parkinson AJ, Multicenter Clinical Trial Group (2016) United States multicenter clinical trial of the cochlear nucleus hybrid implant system. Laryngoscope. 126(1):175–181. https://doi.org/10.1002/lary.25451

    Article  PubMed  Google Scholar 

  40. Roland JT Jr, Gantz BJ, Waltzman SB, Parkinson AJ (2018) Long-term outcomes of cochlear implantation in patients with high-frequency hearing loss. Laryngoscope. 128(8):1939–1945. https://doi.org/10.1002/lary.27073

    Article  PubMed  PubMed Central  Google Scholar 

  41. Scheperle RA, Tejani VD, Omtvedt JK, Brown CJ, Abbas PJ, Hansen MR, Gantz BJ, Oleson JJ, Ozanne MV (2017) Delayed changes in auditory status in cochlear implant users with preserved acoustic hearing. Hear Res. 350:45–57. https://doi.org/10.1016/j.heares.2017.04.005

    Article  PubMed  PubMed Central  Google Scholar 

  42. Stakhovskaya O, Sridhar D, Bonham BH, Leake PA (2007) Frequency map for the human cochlear spiral ganglion: implications for cochlear implants. J Assoc Res Otolaryngol. 8(2):220–233. https://doi.org/10.1007/s10162-007-0076-9

    Article  PubMed  PubMed Central  Google Scholar 

  43. Tanaka C, Nguyen-Huynh A, Loera K, Stark G, Reiss L (2014) Factors associated with hearing loss in a normal-hearing guinea pig model of Hybrid cochlear implants. Hear Res. 316:82–93. https://doi.org/10.1016/j.heares.2014.07.011

    Article  PubMed  PubMed Central  Google Scholar 

  44. Tejani VD, Abbas PJ, Brown CJ, Woo J (2019) An improved method of obtaining electrocochleography recordings from Nucleus Hybrid cochlear implant users. Hear Res. 373:113–120. https://doi.org/10.1016/j.heares.2019.01.002

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tykocinski M, Cohen LT, Cowan RS (2005) Measurement and analysis of access resistance and polarization impedance in cochlear implant recipients. Otol Neurotol. 26(5):948–956. https://doi.org/10.1097/01.mao.0000185056.99888.f3

    Article  PubMed  Google Scholar 

  46. Van Abel KM, Dunn CC, Sladen DP, Oleson JJ, Beatty CW, Neff BA, Hansen M, Gantz BJ, Driscoll CL (2015) Hearing preservation among patients undergoing cochlear implantation. Otol Neurotol 36(3):416–421. https://doi.org/10.1097/mao.0000000000000703

    Article  PubMed  PubMed Central  Google Scholar 

  47. Yang H, Tejani VD, Kim J-S, Abbas PJ, Brown CJ, Woo J (2019) Localized impedance changes with delayed-onset hearing loss in hybrid cochlear implant users. in: conference on implantable auditory prostheses, lake Tahoe, CA, July 2019

Download references

Funding

National Institutes of Health/National Institute on Deafness and Other Communicative Disorders P50 DC 00242 (PI: Gantz)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Viral D. Tejani.

Ethics declarations

Conflict of Interest

BJG is a consultant for Cochlear Ltd. MRH is co-founder and Chief Medical Officer for iotaMotion, Inc. VDT is a consultant for iotaMotion, Inc. All other authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tejani, V.D., Kim, JS., Oleson, J.J. et al. Residual Hair Cell Responses in Electric-Acoustic Stimulation Cochlear Implant Users with Complete Loss of Acoustic Hearing After Implantation. JARO (2021). https://doi.org/10.1007/s10162-021-00785-4

Download citation

Keywords

  • electrocochleography
  • hearing preservation
  • electric-acoustic stimulation
  • hybrid
  • cochlear microphonic
  • auditory nerve neurophonic