Skip to main content
Log in

Time-Compressed Speech Identification Is Predicted by Auditory Neural Processing, Perceptuomotor Speed, and Executive Functioning in Younger and Older Listeners

  • Research Article
  • Published:
Journal of the Association for Research in Otolaryngology Aims and scope Submit manuscript

Abstract

Older adults typically have difficulty identifying speech that is temporally distorted, such as reverberant, accented, time-compressed, or interrupted speech. These difficulties occur even when hearing thresholds fall within a normal range. Auditory neural processing speed, which we have previously found to predict auditory temporal processing (auditory gap detection), may interfere with the ability to recognize phonetic features as they rapidly unfold over time in spoken speech. Further, declines in perceptuomotor processing speed and executive functioning may interfere with the ability to track, access, and process information. The current investigation examined the extent to which age-related differences in time-compressed speech identification were predicted by auditory neural processing speed, perceptuomotor processing speed, and executive functioning. Groups of normal-hearing (up to 3000 Hz) younger and older adults identified 40, 50, and 60 % time-compressed sentences. Auditory neural processing speed was defined as the P1 and N1 latencies of click-induced auditory-evoked potentials. Perceptuomotor processing speed and executive functioning were measured behaviorally using the Connections Test. Compared to younger adults, older adults exhibited poorer time-compressed speech identification and slower perceptuomotor processing. Executive functioning, P1 latency, and N1 latency did not differ between age groups. Time-compressed speech identification was independently predicted by P1 latency, perceptuomotor processing speed, and executive functioning in younger and older listeners. Results of model testing suggested that declines in perceptuomotor processing speed mediated age-group differences in time-compressed speech identification. The current investigation joins a growing body of literature suggesting that the processing of temporally distorted speech is impacted by lower-level auditory neural processing and higher-level perceptuomotor and executive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

Download references

Acknowledgements

We would like to thank Sandra Gordon-Salant for providing the time-compressed stimuli for this study.

Funding

This work was supported (in part) by grants from the National Institute on Deafness and Other Communication Disorders (NIDCD) (R01 DC014467, P50 DC00422, and T32 DC014435). The project also received support from the South Carolina Clinical and Translational Research (SCTR) Institute with an academic home at the Medical University of South Carolina, National Institute of Health/National Center for Research Resources (NIH/NCRR) Grant number UL1RR029882. This investigation was conducted in a facility constructed with support from Research Facilities Improvement Program Grant Number C06 RR1 4516 from the National Center for Research Resources, NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W. Dias.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dias, J.W., McClaskey, C.M. & Harris, K.C. Time-Compressed Speech Identification Is Predicted by Auditory Neural Processing, Perceptuomotor Speed, and Executive Functioning in Younger and Older Listeners. JARO 20, 73–88 (2019). https://doi.org/10.1007/s10162-018-00703-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10162-018-00703-1

Keywords

Navigation