The effects of tricaine mesylate on arthropods: crayfish, crab and Drosophila

Abstract

Tricaine mesylate, also known as MS-222, was investigated to characterize its effects on sensory neurons, synaptic transmission at the neuromuscular junction, and heart rate in invertebrates. Three species were examined: Drosophila melanogaster, blue crab (Callinectes sapidus), and red swamp crayfish (Procambarus clarkii). Intracellular measures of action potentials in motor neurons of the crayfish demonstrated that MS-222 dampened the amplitude, suggesting that voltage-gated Na + channels are blocked by MS-222. This is likely the mechanism behind the reduced activity measured in sensory neurons and depressed synaptic transmission in all three species as well as reduced cardiac function in the larval Drosophila. To address public access to data, a group effort was used for analysis of given data sets, blind to the experimental design, to gauge analytical accuracy. The determination of a threshold in analysis for measuring extracellular recorded sensory events is critical and is not easily performed with commercial software.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Alexandrowicz JS (1967) Receptor organs in the coxal region of Palinurus vulgaris. J Marine Biol Assoc UK 47:415–432

    Article  Google Scholar 

  2. Applegate JR Jr, Dombrowski DS, Christian LS, Bayer MP, Harms CA, Lewbart GA (2016) Tricaine methanesulfonate (ms-222) sedation and anesthesia in the purple-spined sea urchin (Arbacia punctulata). J Zoo Wildlife Med 47(4):1025–1033. https://doi.org/10.1638/2015-0288.1

    Article  Google Scholar 

  3. Archibald KE, Scott GN, Bailey KM, Harms CA (2019) 2-phenoxyethanol (2-pe) and tricaine methanesulfonate (ms-222) immersion anesthesia of American horseshoe crabs (Limulus polyphemus). J Zoo Wildl Med 50(1):96–106. https://doi.org/10.1638/2018-0085

    Article  PubMed  Google Scholar 

  4. Attili S, Hughes SM (2014) Anaesthetic tricaine acts preferentially on neural voltage-gated sodium channels and fails to block directly evoked muscle contraction. PLoS ONE 9(8):e103751. https://doi.org/10.1371/journal.pone.0103751

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Atwood HL, Cooper RL (1996) Assessing ultrastructure of crustacean and insect neuromuscular junctions. J Neurosci Methods 69:51–58

    CAS  PubMed  Article  Google Scholar 

  6. Bagnéris C, DeCaen PG, Naylor CE, Pryde DC, Nobeli I, Clapham DE, Wallace BA (2014) Prokaryotic NavMs channel as a structural and functional model for eukaryotic sodium channel antagonism. Proc Natl Acad Sci USA 111:8428–8433

    PubMed  Article  CAS  Google Scholar 

  7. Baierlein B, Thurow AL, Atwood HL, Cooper RL (2011) Membrane potentials, synaptic responses, neuronal circuitry, neuromodulation and muscle histology using the crayfish: student laboratory exercises. J Vis Exp 47, http://www.jove.com/Details.php?ID=2322. https://doi.org/10.3791/2325

  8. Bakshi A, Patrick LE, Wischusen EW (2016) A framework for implementing course-based undergraduate research experiences (CUREs) in freshman biology labs. Am Biol Teach 78(6):448–455

    Article  Google Scholar 

  9. Barron AB (2000) Anaesthetising for behavioural studies. J Insect Physiol 46(4):439–442

    CAS  PubMed  Article  Google Scholar 

  10. Bewick GS, Banks RW (2015) Mechanotransduction in the muscle spindle. Pflügers Archiv 467(1):175–190. https://doi.org/10.1007/s00424-014-1536-9

    CAS  Article  PubMed  Google Scholar 

  11. Bierbower SM, Cooper RL (2009) Measures of heart and ventilatory rates in freely moving crayfish. J Vis Exp 32, http://www.jove.com/index/details.stp?id=1594. https://doi.org/10.3791/1594

  12. Bowker JD, Trushenski JT, Glover DC, Carty DG, Wandelear N (2014) Sedative options for fish research: a brief review with new data on sedation of warm-, cool-, and coldwater fishes and recommendations for the drug approval process. Rev Fish Biol Fish 25(1):147–163. https://doi.org/10.1007/s11160-014-9374-6

    Article  Google Scholar 

  13. Brodbelt DC (2009) Perioperative mortality in small animal anaesthesia. Veterinary J (Lond) 182:152–161

    Article  Google Scholar 

  14. Brown PB, White MR, Chaille J, Russell M, Oseto C (1996) Evaluation of three anesthetic agents for crayfish (Orconectes virilis). J Shellfish Res 15(2):433–435

    Google Scholar 

  15. Butterworth JFT, Strichartz GR (1990) Molecular mechanisms of local anesthesia: a review. Anesthesiology 72:711–734

    CAS  PubMed  Article  Google Scholar 

  16. Cakir Y, Strauch SM (2005) Tricaine (MS-222) is a safe anesthetic compound compared to benzocaine and pentobarbital to induce anesthesia in leopard frogs (Rana pipiens). Pharmacol Rep 57:467–474

    PubMed  Google Scholar 

  17. Catterall WA, Cestele S, Yarov-Yarovoy V, Yu FH, Konoki K, Scheuer T (2007) Voltage-gated ion channels and gating modifier toxins. Toxicon 49:124–141

    CAS  PubMed  Article  Google Scholar 

  18. Clare JDJ, Townsend PA, Anhalt-Depies C, Locke C, Stenglein JL, Frett S, Martin KJ, Singh A, Van Deelen TR, Zuckerberg B (2019) Making inference with messy (citizen science) data: when are data accurate enough and how can they be improved? Ecol Appl 29(2):e01849. https://doi.org/10.1002/eap.1849

    Article  PubMed  Google Scholar 

  19. Collymore C, Banks EK, Turner PV (2016) Lidocaine hydrochloride compared with ms222 for the euthanasia of zebrafish (Danio rerio). J Am Assoc Lab Anim Sci 55(6):816–820

    PubMed  PubMed Central  Google Scholar 

  20. Cooper RL (2008) Mapping proprioceptive neurons on chordotonal organs in the crab. Cancer magister Crustaceana 81(4):447–475

    Article  Google Scholar 

  21. Cooper AS, Cooper RL (2009). Historical view and demonstration of physiology at the NMJ at the crayfish opener muscle. J Vis Exp 33. http://www.jove.com/index/details.stp?id=1595. https://doi.org/10.3791/1595

  22. Cooper RL, Govind CK (1991) Axon composition of the proprioceptive PD nerve during growth and regeneration of lobster claws. J Exp Zool 260:181–193

    Article  Google Scholar 

  23. Cooper RL, Hartman HB (1999) Quantification of responses from proprioceptive neurons in the limbs of the crab, Cancer magister. J Exp Zool 284:629–636

    CAS  PubMed  Article  Google Scholar 

  24. Cooper AS, Rymond KE, Ward MA, Bocook EL, Cooper RL (2009) Monitoring heart function in larval Drosophila melanogaster for physiological studies. J Vis Exp 32, http://www.jove.com/index/details.stp?id=1596

  25. Cooper AS, Leksrisawat B, Mercier AJ, Gilberts AB, Cooper RL (2011) Physiological experimentations with the crayfish hindgut. J Vis Exp 47, http://www.jove.com/details.php?id=2324doi: https://doi.org/10.3791/2324

  26. Coyle SD, Dasgupta S, Tidwell JH, Beavers T, Bright LA, Yasharian DK (2005) Comparative Efficacy of Anesthetics for the Freshwater Prawn Macrobrachiurn rosenbergii. J World Aquac Soc 36:282–290. https://doi.org/10.1111/j.1749-7345.2005.tb00332.x

    Article  Google Scholar 

  27. Crider ME, Cooper RL (2000) Differential facilitation of high- and low-output nerve terminals from a single motor neuron. J Appl Physiol 88:987–996

    CAS  PubMed  Article  Google Scholar 

  28. Davies TG, Field LM, Usherwood PN, Williamson MS (2007) A comparative study of voltage-gated sodium channels in the Insecta: implications for pyrethroid resistance in Anopheline and other Neopteran species. Insect Mol Biol 16:361–375

    CAS  PubMed  Article  Google Scholar 

  29. Davis DJ, Klug J, Hankins M, Doerr HM, Monticelli SR, Song A, Gillespie CH, Bryda EC (2015) Effects of clove oil as a euthanasia agent on blood collection efficiency and serum cortisol levels in Danio rerio. J Am Assoc Lab Anim Sci 54(5):564–567

    PubMed  PubMed Central  Google Scholar 

  30. DayaramV, Malloy C, Martha S, Alvarez B, Chukwudolue I, Dabbain N, Mahmood DD, Goleva S, Hickey T, Ho A, King M, Kington P, Mattingly M, Potter S, Simpson L, Spence A, Uradu H, Van Doorn JL, Cooper RL (2017) Stretch activated channels in propriocep-tive chordotonal organs of crab and crayfish are sensitive to Gd3 + but not amiloride, ruthenium red or low pH. IMPLUSE The Premier Undergraduate Neuroscience Journal, https://impulse.appstate.edu/issues/2017

  31. de Castro C, Titlow J, Majeed ZR, Cooper RL (2014) Analysis of various physiological salines for heart rate, CNS function, and synaptic transmission at neuromuscular junctions in Drosophila melanogaster larvae. J Comp Physiol A 200:83–92

    Article  CAS  Google Scholar 

  32. de Castro C, Titlow JS, Majeed ZR, Malloy C, King KE, Cooper RL (2019) Chemical and mechanical factors required for maintaining cardiac rhythm in Drosophila melanogaster larva. J Entomol 16(2):62–73

    Article  Google Scholar 

  33. Desai-Shah M, Viele K, Sparks G, Nadolski J, Hayden B, Srinivasan VK, Cooper RL (2008) Assessment of synaptic function during short-term facilitation in motor nerve terminals in the crayfish. Open Neurosci J 2:24–35

    CAS  Article  Google Scholar 

  34. Desai-Shah M, Papoy AR, Ward M, Cooper RL (2010) Roles of the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase, plasma membrane Ca2+-ATPase and Na+/Ca2+ exchanger in regulation of heart rate in larval Drosophila. Open Physiol J 3:16–36

    CAS  Article  Google Scholar 

  35. Diggles K (2018) Review of some scientific issues related to crustacean welfare. International Council for the Exploration of the Sea Journal of Marine Science. fsy058, https://doi.org/10.1093/icesjms/fsy058

    Article  Google Scholar 

  36. EFSA (2005). Aspects of the biology and welfare of animals used for experimental and other scientific purposes. EFSA J 292: 1–46. https://ec.europa.eu/environment/chemicals/lab_animals/pdf/efsa_opinion.pdf

  37. Flecknell PA (1984) The relief of pain in laboratory animals. Lab Anim 18(2):147–160. https://doi.org/10.1258/002367784780891226

    CAS  Article  PubMed  Google Scholar 

  38. Frazier DT, Narahashi T (1975) Tricaine (MS-222): effects on ionic conductances of squid axon membranes. Eur J Pharmacol 33(2):313–317

    CAS  PubMed  Article  Google Scholar 

  39. Gaynor JS, Dunlop CI, Wagner AE, Wertz EM, Golden AE, Demme WC (1999) Complications and mortality associated with anesthesia in dogs and cats. J Am Anim Hosp Assoc 35(1):13–17. https://doi.org/10.5326/15473317-35-1-13

    CAS  Article  PubMed  Google Scholar 

  40. Gilbert PW, Wood FG (1957) Method of anesthetizing large sharks and rays safely and rapidly. Science 126(3266):212–213. https://doi.org/10.1126/science.126.3266.212

    CAS  Article  PubMed  Google Scholar 

  41. Gu GG, Singh S (1995) Pharmacological analysis of heartbeat in Drosophila. J Neurobiol 28:269–280

    CAS  PubMed  Article  Google Scholar 

  42. Guttman D (1967) MS-222 Sandoz as an anesthetic for black fly larvae (Diptera: Simuliidae). J Med Entomol 4(4):477–478

    CAS  PubMed  Article  Google Scholar 

  43. Hartman HB, Boettiger EG (1967) The functional organization of the propus-dactylus organ in Cancer irroratus Say. Comp Biochem Physiol 22:651–663

    Article  Google Scholar 

  44. Hartman HB, Cooper RL (1994) Regeneration and molting effects on a proprioceptor organ in the Dungeness crab, Cancer magister. J Neurobiol 25:461–471

    CAS  PubMed  Article  Google Scholar 

  45. Håstein T, Scarfe AD, Lund VL (2005) Science-based assessment of welfare: aquatic animals. Revue scientifique et technique (International Office of Epizootics) 24(2):529–547

    Google Scholar 

  46. He P, Southard RC, Whiteheart SW, Cooper RL (1999) Role of alpha-SNAP in promoting efficient neurotransmission at the crayfish neuromuscular junction. J Neurophysiol 82:3406–3416

    CAS  PubMed  Article  Google Scholar 

  47. Holsinger RC, Cooper RL (2012) Effect of environment and modulators on hindgut and heart function in invertebrates: Crustaceans and Drosophila. Tested Studies for Laboratory Teaching, Volume 33 (K. McMahon, Editor). Proceedings of the 33rd Conference of the Association for Biology Laboratory Education (ABLE). http://www.ableweb.org/volumes/vol-33/v33reprint.php?ch=7

  48. Javahery S, Nekoubin H, Moradlu AH (2012) Effect of anaesthesia with clove oil in fish. Fish Physiol Biochem 38:1545–1552

    CAS  PubMed  Article  Google Scholar 

  49. Johnson BR, Wyttenbach RA, Hoy RR (2014) Crustaceans as model systems for teaching neuroscience: past, present, and future. In: Derby C, Thiel M (eds) Nervous systems and control of behavior, the natural history of the Crustacea. Oxford University Press, New York

    Google Scholar 

  50. Kuffler SW (1954) Mechanisms of activation and motor control of stretch receptors in lobster and crayfish. J Neurophysiol 17:558–574

    CAS  PubMed  Article  Google Scholar 

  51. Kurdyak P, Atwood HL, Stewart BA, Wu C-F (1994) Differential physiology and morphology of motor axons to ventral longitudinal muscle in larval Drosophila. J Comp Neurol 350:463–472

    CAS  PubMed  Article  Google Scholar 

  52. Lea T (1996) Caffeine and micromolar Ca2 + concentrations can release Ca2 + from ryanodine-sensitive stores in crab and lobster striated muscle fibres. J Exp Biol 199(11):2419–2428

    CAS  PubMed  Google Scholar 

  53. Lea F, Malheiro B, González-Vélez H, Burguillo JC (2017) Trust-based modelling of multi-criteria crowdsourced data. Data Sci Eng 2(3):199–209

    Article  Google Scholar 

  54. Lee MH, Yeon KY, Park CK, Li HY, Fang Z, Kim MS, Choi SY, Lee SJ, Lee S, Park K, Lee JH, Kim JS, Oh SB (2005) Eugenol inhibits calcium currents in dental afferent neurons. J Dent Res 84:848–851

    CAS  PubMed  Article  Google Scholar 

  55. Lee S, Goodchild SJ, Ahern CA (2012) Local anesthetic inhibition of a bacterial sodium channel. J Gen Physiol 139:507–516

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  56. Leksrisawat B, Cooper AS, Gilberts AB, Cooper RL (2010) Response properties of muscle receptor organs in the crayfish abdomen: A student laboratory exercise in proprioception. J Vis Exp 45 http://www.jove.com/index/details.stp?id=2323. https://doi.org/10.3791/2323

  57. Li H, Harrison D, Jones G, Jones D, Cooper RL (2001) Alterations in development, behavior, and physiology in Drosophila larva that have reduced ecdysone production. J Neurophysiol 85:98–104

    CAS  PubMed  Article  Google Scholar 

  58. Lierz M, Korbel R (2012) Anesthesia and analgesia in birds. J Exotic Pet Med 21(1):44–58. https://doi.org/10.1053/j.jepm.2011.11.008

    Article  Google Scholar 

  59. Linn MC, Palmer E, Baranger A, Gerard E, Stone E (2015) Undergraduate research experiences: impacts and opportunities. Science 347:1261757

    PubMed  Article  CAS  Google Scholar 

  60. Listerman L, Deskins J, Bradacs H, Cooper RL (2000) Measures of heart rate during social interactions in crayfish and effects of 5-HT. Compa Biochem Physiol A 125:251–264

    CAS  Article  Google Scholar 

  61. Majeed ZR, Nichols CD, Cooper RL (2013a) 5-HT stimulation of heart rate in Drosophila does not act through cAMP as revealed by pharmacogenetics. J Appl Physiol 115:1656–1665

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  62. Majeed ZR, Titlow J, Hartman HB, Cooper RL (2013b) Proprioception and tension receptors in crab limbs: student laboratory exercises. J Vis Exp 80:e51050. https://doi.org/10.3791/51050

    Article  Google Scholar 

  63. Majeed ZR, Stacy A, Cooper RL (2014) Pharmacological and genetic identification of serotonin receptor subtypes on Drosophila larval heart and aorta. J Comp Physiol B 184:205–219

    CAS  PubMed  Article  Google Scholar 

  64. Majeed Z, Koch F, Morgan J, Anderson H, Wilson J, Cooper RL (2017) A novel educa-tional module to teach neural circuits for college and high school students: NGSS-neurons, genetics, and selective stimulations. F1000Research: Immediate & Transparent Publishing for Life Scientists. F1000 Research Ltd, Middlesex House, 34-42 Cleveland St, London W1T 4LB, UK.https://f1000research.com/articles/6-117/v1

  65. Malloy CA, Ritter K, Robinson J, English C, Cooper RL (2015) Pharmacological identification of cholinergic receptor subtypes on Drosophila melanogaster larval heart. J Comp Physiol B 186:45–57

    PubMed  Article  CAS  Google Scholar 

  66. Malloy C, DayaramV Martha S, Alvarez B, Chukwudolue I, Dabbain N, Mahmood DD, Goleva S, Hickey T, Ho A, King M, Kington P, Mattingly M, Potter S, Simpson L, Spence A, Uradu H, Van Doorn JL, Weineck K, Cooper RL (2017) The effects of potassium and muscle homogenate on proprioceptive responses in crayfish and crab. J Exp Zool 327(6):366–379

    CAS  Article  Google Scholar 

  67. Mendelson M (1963) Some factors in the activation of crab movement receptors. J Exp Biol 40:157–169

    Google Scholar 

  68. Ramlochansingh C, Branoner F, Chagnaud BP, Straka H (2014) Efficacy of tricaine methanesulfonate (MS-222) as an anesthetic agent for blocking sensory-motor responses in Xenopus laevis tadpoles. PLoS ONE 9(7):e101606. https://doi.org/10.1371/journal.pone.0101606

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  69. Robinson MM, Martin JM, Atwood HL, Cooper RL (2011). Modeling biological membranes with circuit boards and measuring conduction velocity in axons: Student laboratory exercises. J Vis Exp 47, http://www.jove.com/details.php?id=2325. https://doi.org/10.3791/2325

  70. Roth B, Øines S (2010) Stunning and killing of edible crabs (Cancer pagurus). Anim Welf 19:287–294

    CAS  Google Scholar 

  71. Rydqvist B, Lin JH, Sand P, Swerup C (2007) Mechanotransduction and the crayfish stretch receptor. Physiol Behav 92(1–2):21–28

    CAS  PubMed  Article  Google Scholar 

  72. Schmit O, Mezquita F (2010) Experimental test on the use of MS-222 for ostracod anaesthesia: concentration, immersion period and recovery time. J Limnol 69(2):350–352. https://doi.org/10.3274/JL10-69-2-N1

    Article  Google Scholar 

  73. Sénatore S, Reddy VR, Sémériva M, Perrin L, Lalevée N (2010) Response to mechanical stress is mediated by the TRPA channel painless in the Drosophila heart. PLoS Genet 6(9):e1001088. https://doi.org/10.1371/journal.pgen.1001088

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  74. SOFIA 2018 http://www.fao.org/publications/sofia/en/ (Accessed on Aug. 20, 2019)

  75. Sømme LS (2005) Sentience and pain in invertebrates. Report to Norwegian Scientific Committee for Food Safety. Norwegian University of Life Sciences, Oslo. Website: vkm.no/dav/0327284150.pdf

  76. Stanback M, Stanback AE, Akhtar S, Basham R, Chithrala B, Collis B, Heberle BA, Higgins E, Lane A, Marella S, Ponder M, Raichur P, Silverstein A, Stanley C, Vela K, Cooper RL (2019). The effect of lipopolysaccharides on primary sensory neurons in crustacean models. IMPLUSE https://impulse.appstate.edu/articles/2019/effect-lipopolysaccharides-primary-sensory-neurons-crustacean-models

  77. Stewart BA, Atwood HL, Renger JJ, Wang J, Wu CF (1994) Improved stability of Drosophila larval neuromuscular preparation in haemolymph-like physiological solutions. J Comp Physiol A 175:179–191

    CAS  PubMed  Article  Google Scholar 

  78. Stoskopf MK (2006) Coelenterates. In: Lewbart GA (ed) Invertebrate medicine, 1st edn. Blackwell Publishing, Ames, pp 19–52

    Google Scholar 

  79. Thenappan A, Dupont-Versteegden EE, Cooper RL (2019) An educational model for understanding acute deep tissue injury of motor units. Journal of Young Investigators 36(5):62–71

    Google Scholar 

  80. Titlow J, Majeed ZR, Hartman HB, Burns E, Cooper RL (2013a) Neural circuit recording from an intact cockroach nervous system. J Vis Exp 80:e51050. https://doi.org/10.3791/51050

    Article  Google Scholar 

  81. Titlow JS, Rufer JM, King KE, Cooper RL (2013b) Pharmacological analysis of dopamine modulation in the Drosophila melanogaster larval heart. Physiol Rep 1(2):e00020. https://doi.org/10.1002/phy2.20

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  82. Wayson KA (1976) Studies on the comparative pharmacology and selective toxicity of tricaine methanesulfonate: metabolism as a basis of the selectivity toxicity in poikilotherms. J Pharmacol Exp Ther 198(3):695–708

    CAS  PubMed  Google Scholar 

  83. Weineck K, Ray AJ, Fleckenstein L, Medley M, Dzubuk N, Piana E, Cooper RL (2018) Physiological changes as a measure of crustacean welfare under different standardized stunning techniques: cooling and electroshock. Animals 8(9):e158. https://doi.org/10.3390/ani8090158

    Article  PubMed  Google Scholar 

  84. Weineck K, Stanback AE, Cooper RL (2019) The effects of eugenol as an anesthetic for an insect: Drosophila, adult, larval heart rate and synaptic transmission. Article 54. In: McMahon K editor. Tested studies for laboratory teaching. Volume 40. Proceedings of the 39th Conference of the Association for Biology Laboratory Education (ABLE). http://www.ableweb.org/volumes/vol-40/?art=# Vol 40, Article 54, 2019

  85. Whitear M (1960) Chordotonal organs in Crustacea. Nature, London 187:522–523

    CAS  Article  Google Scholar 

  86. Whitear M (1962) The fine structure of crustacean proprioceptors. I. The chordotonal organs in the legs of the shore crab, Carcinus meanas. Philos TransR Soc B 245:291–325

    Google Scholar 

  87. Whitear M (1965) The fine structure of crustacean proprioceptors. II. The thoracico- -coxal organs in Carcinus, Pagurus and Astacus. Philos TransR Soc B 248(752):437–462

    Google Scholar 

  88. Wiersma CAG (1959) Movement receptors in decapod Crustacea. J Marine Biol Assoc UK 38:143–152

    Article  Google Scholar 

  89. Wiersma CAG, Boettiger EG (1959) Unidirectional movement fibers from a proprioceptive organ of the crab, Carcinus maenas. J Exp Biol 36:102–112

    Google Scholar 

  90. Wilkens JL, Mercier AJ, Evans J (1985) Cardiac and ventilatory responses to stress and to neurohormonal modulators by the shore crab Carcinus maenas. Comp Biochem Physiol 82C:337–343

    CAS  Google Scholar 

  91. Wycoff S, Weineck K, Conlin S, Grau E, Bradley A, Cantrell D, Eversole S, Grachen C, Hall K, Hawthorne D, Kinmon C, Ortiz Guerrero P, Patel B, Samuels K, Suryadevara C, Valdes G, Ray A, Fleckenstein L, Piana E, Cooper RL (2018) Investigating potential effects of clove oil (eugenol) in model crustaceans. Impluse, 1–21. https://impulse.appstate.edu/articles/2018/effects-clove-oil-eugenol-proprioceptive-neurons-heart-rate-and-behavior-model-crustac

  92. Zakon HH (2012) Adaptive evolution of voltage-gated sodium channels: the first 800 million years. Proc Natl Acad Sci USA 109:10619–10625. https://doi.org/10.1073/pnas.1201884109

    Article  PubMed  Google Scholar 

  93. Zhu YC, Yocom E, Sifers J, Uradu H, Cooper RL (2016a) Modulatory effects on Drosophila larva hearts: room temperature, acute and chronic cold stress. J Comp Physiol A 186:829–841

    CAS  Article  Google Scholar 

  94. Zhu YC, Uradu H, Majeed ZR, Cooper RL (2016b) Optogenetic stimulation of Drosophila heart rate at different temperatures and Ca2+ concentrations. Physiol Rep 4(3):e12695. https://doi.org/10.14814/phy2.12695

    CAS  Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funded by Dept. of Biology, Univ. of KY. and by an Institutional Development Award (IDeA) from the National Institute of General Medical Sciences of the National Institutes of Health under grant number P20GM103436 (R.A.)

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robin L. Cooper.

Ethics declarations

Conflict of interest

None.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Stanley, C.E., Adams, R., Nadolski, J. et al. The effects of tricaine mesylate on arthropods: crayfish, crab and Drosophila. Invert Neurosci 20, 10 (2020). https://doi.org/10.1007/s10158-020-00243-5

Download citation

Keywords

  • Sensory
  • Anesthetics
  • Invertebrate
  • Crustacean
  • Insect
  • Cardiac
  • Neuromuscular
  • MS-222