Kidney biopsy guidebook 2020 in Japan

Overview

A kidney biopsy is performed for a treatment strategy of renal disease by pathologically diagnosing renal disease. Kidney biopsy is a reliable gold standard technique, but various complications are common when obtaining tissue from an abundant vascular kidney. During a biopsy, vasovagal reflexes, including cold sweat, discomfort, nausea, vomiting, hypotension, and bradycardia, can occur. Hemorrhagic complications after a biopsy are important; 89% of hemorrhagic complications have been reported to occur within 24 h. Therefore, a cooperation system including nurses and physicians by performing intravenous feeding and medication, while performing electrocardiogram monitoring and oxygen saturation monitoring, is necessary.

Therefore, it is necessary to always take the benefits and risks of kidney biopsy into consideration and decide if there is an indication for kidney biopsy.

The conventional criteria for the indication of kidney biopsy for adults are shown in Table 1, according to previous reports [1,2,3]. However, there is an opinion that it is necessary to extend these indications [3]. The following opinions were sent by a member of the Japanese Society of Nephrology.

  • There is an indication for kidney biopsy beyond the above indication. The indication must be considered in every case. It is important that it does not limit the experience-rich institutional practice.

  • Nephrologists, including young doctors with little experience in kidney biopsy, should recognize the safety procedures that are necessary to prevent the threshold to high-risk clinical conditions from lowering.

  • Cases of serious complications such as bleeding can happen, and the appropriate security guidelines for treatment should be prepared before a kidney biopsy.

Table 1 The conventional criteria for the indication of the kidney biopsy for adults

The clinical treatment of renal disease is possible without performing a kidney biopsy. However, many nephrologists should note that a higher-quality clinical treatment is enabled by performing kidney biopsy.

The final decision of whether you perform kidney biopsy should be decided based on each institution’s guidelines and should be judged for every individual patient carefully. With respect to the decision, it is necessary to be performed based on the concept of “shared decision making: SDM,” after each attending physician explains the need and the risk of kidney biopsy to each patient thoroughly. We have provided explanations in the ‘Kidney biopsy guidebook 2020 in Japan’ along with questions and answers based on the results of a questionnaire survey for kidney biopsy that was performed in Japan from 2015 through 2017 by the Committee of Practical Guide for Kidney biopsy [4, 5], while adding the outline of the first edition of 2004 [1].

Chapter 1: Indication for kidney biopsy (Table 2)

Table 2 Indication of kidney biopsy in adults
figurea
figureb
figurec
figured
figuree
figuref
figureg
  • Systemic disease with renal dysfunction, but without a urinalysis abnormality, includes acute or chronic tubulointerstitial nephritis secondary to sarcoidosis, drug-related disease such as tyrosine kinase inhibitors and checkpoint inhibitors. IgG4-related nephritis, or hypercalcemic nephropathy by activated cholecalciferol. A high value of tubular impairment markers such as β2-microglobulin (β2MG), α1-microglobulin (α1MG), or N-acetyl-β-d-glucosaminidase (NAG) is characteristic.

  • Systemic lupus erythematosus without urinary abnormality is called silent lupus nephritis. Light microscopy of kidney biopsy is reported to show mild glomerular change with class I or class II on 74% of silent lupus nephritis according to ISN-RPS lupus nephritis classification, but immunofluorescent microscopy shows IgG and C1q stain, and electron microscopy shows electron-dense deposits in the mesangium or subepithelium, which are characteristic to lupus nephritis.

  • Systemic vasculitis, including MPA, GPA and EGPA, can be diagnosed by extrarenal complications such as fever, upper respiratory tract disease, lung disease, neuropathy, and positivity for ANCA, even though urinary abnormality is negative. For these patients, kidney biopsy is reported to show crescent formation or vasculitis of small arteries with a frequency of 69%, although extrarenal organ biopsy may not show any vasculitis [26,27,28,29].

figureh
figurei
figurej
figurek

Chapter 2: Kidney biopsy for patients with a clinical condition of high risk for percutaneous native kidney biopsy

Overview

The following renal disease was contraindicated for percutaneous native kidney biopsy under the ultrasonic guidance in the previous edition of the guidebook because the risk of hemorrhagic complications after a kidney biopsy is very high, and renal tissue sampling necessary for diagnosis is not obtained [1] (Table 3). However, as biopsy techniques, by using a newer US device and automatic biopsy needle, improved safety, there have been several reported case series that required or enabled histological diagnosis by kidney biopsy [4]. Therefore, when the benefit is judged to exceed a risk, kidney biopsy is indicated for patients with a clinical condition of high risk. A kidney biopsy should be performed in institutions that can treat hemorrhagic complications. The following diseases are not absolute contraindicated anymore but are described as a renal disease with high risk by a question and answer method.

Table 3 Clinical condition of the high risk (equaling relative contraindication) for percutaneous native kidney biopsy under ultrasonic guidance
figurel
figurem
figuren
figureo
figurep
figureq
figurer
figures
figuret
figureu
figurev
figurew
figurex
  • For patients on chronic anticoagulation, kidney biopsy usually cannot be selected.

  • Whether kidney biopsy is essential or necessary for diagnosis, prognosis, and/or management must be discussed in the conference conducted at the institute.

  • If anticoagulation is temporarily stopped (e.g., mechanical heart valves), the risk of thrombosis must be judged in consideration of an individual situation, often in consultation with hematology and cardiology.

  • If anticoagulation is continued, the risk for bleeding after kidney biopsy must be evaluated in consideration of an individual situation. Kidney biopsy should be performed in an institution with the facilities for emergency treatment [123,124,125] (Table 4).

figurey
figurez
figureaa
figureab
figureac
Table 4 Chronic anticoagulation and drug holiday before kidney biopsy including two types of options in Japan

Chapter 3: Informed consent and explanation document to the patients

Informed consent in kidney biopsy

Overview

Kidney biopsy is a gold standard for renal disease diagnosis and is the testing that we cannot miss in renal disease practice. However, it is invasive testing, and adequate informed consent is necessary. With respect to the nephrologist, it is necessary to explain the possible complications by the testing procedures, including hemorrhagic complications, in addition to the benefits of kidney biopsy to the patients. With respect to the patients, it is important to consent to kidney biopsy based on their own intention after having understood the benefits (merits) and disadvantages (demerits) of kidney biopsy explained by a physician [126].

In Japan, informed consent is obtained before kidney biopsy, and kidney biopsy is performed after, as a general rule, having acquired an agreement by letter. In this issue, the informed consent is commented by a question and answer method.

figuread
figureae
figureaf
figureag
figureah
figureai

Explanation document to the patients

figureaj

We take some kidney tissue by using the needle with the core size of the ball-point pen, observe it with a microscope, and clarify a cause of renal disease occurring in kidney. If a cause of the illness is understood, we can suggest an optimal therapy. A procedure or an operation to take out kidney tissue is named kidney biopsy.

figureak
figureal
figuream
figurean
figureao
  1. 1.

    We put an indwelling needle for intravenous feeding in the blood vessel of the arm before testing. An antimicrobial agent and/or hemostatic are usually given before testing. When BP falls or you came to feel sick during testing, a drug is given through an indwelling needle.

  2. 2.

    We cancel your diet before the testing. This is because you come to feel sick, and you may vomit by the pressure from a back hemostasis.

  3. 3.

    There is the kidney at the position near a back. You lie on your face and the stomach. A renal place is confirmed by US. From the skin of the back surface to the renal surface, a local anesthetic is injected in place to prick with a needle. We cut about a 2–3 mm opening in the skin surface. This section may remain as a minimal wound subsequently.

  4. 4.

    The thickness of the needle taking the renal tissue is a core size of the ball-point pen, and the length is around 2 cm. When a needle is inserted, there is no pain, but there is the sense that the back is pushed. When the needle reaches the kidney, we signal you. Please hold your breath for 5-10 s. We take the renal tissue at that moment. You hear a clicking sound at the moment that we take the renal tissue. Because there is no pain, do not worry. We conduct this operation 2–4 times.

  5. 5.

    When kidney biopsy is completed, we exert pressure from the back for 10–15 min to stop bleeding.

  6. 6.

    The testing is completed in approximately 30 min. After testing, you turn over on your back. Rest is required in a bed for 6–24 h. Eating and drinking after the testing is performed lying down. Urination and the defecation are carried out on the bed, too. When urination is difficult, we may use a tube called a urethral catheter. After testing, fever may occur. The cause is considered absorption fever occurring when the hematoma that occurred after a biopsy is absorbed.

  7. 7.

    For 4 weeks from the next morning, walking is possible, but please avoid running up the stairs, and please avoid intense, laborious work to avoid exerting stress on the area that was affected by the procedure.

  8. 8.

    With respect to the method of kidney biopsy performed in Japan, an automatic biopsy needle is now used under the ultrasonic guidance in almost all institutions. Kidney biopsy is considerably safer than when performed blindly, and it may be said that it is an established testing method. However, when it may be hard to obtain renal tissue, we may cancel testing on the way without overdoing it. When we cannot obtain renal tissue, or when glomeruli necessary for a diagnosis are not included, we may make a testing plan again.

figureap

There is a "laparoscopic kidney biopsy," which takes the renal tissue while confirming the kidney using laparoscopy as other methods directly (Fig. 1).

Fig. 1
figure1

How to do a kidney biopsy

When there is the high-risk clinical condition and hemorrhagic complications by percutaneous kidney biopsy, when renal tissue is not gained by percutaneous kidney biopsy, "opening kidney biopsy" or "laparoscopic kidney biopsy" is chosen.

figureaq

By light microscopy, we can observe the whole, including glomeruli, renal tubules, and the blood vessels, and can obtain basic information.

By fluorescent microscopy, we observe the presence or absence of deposition and a deposition place of immunoglobulin, including IgG, IgA, and IgM, and complements, such as C3 and C1q.

By electron microscopy, we confirm the cellular internal structure, including glomerular and tubular structure, and a deposit causing nephritis, which spreads approximately 15,000 times.

After performing three tests, a diagnosis of renal disease is made.

figurear

According to questionnaire survey by the Japanese Society of Nephrology for kidney biopsy that was performed in Japan from 2015 through 2017, out of 15,657 adult patients who underwent kidney biopsy by a nephrologist, transfusion was required in 121 cases (0.8%), hemostasis treatment by renal artery embolization in 31 cases (0.2%), gross hematuria with no treatment in 431 cases (2.8%), vesicoclysis in 56 cases (0.4%), death in one (0.006%). Close evaluation of the death cases clarified that bleeding after kidney biopsy is not a direct cause, but the overall status of these cases was poor before kidney biopsy and worsened after kidney biopsy.

Chapter 4: Pre-biopsy evaluation

figureas
  1. 1.

    Medical history

    1. Detailed history of present illness.

    2. Family history of renal diseases.

    3. Past medical and social history.

    4. History of patient medication.

  2. 2.

    Physical examination

  3. 3.

    Blood test

  1. Complete blood cell count

    Erythrocyte transfusion is considered for severe anemia before kidney biopsy. The cutoff value of Hb is 7–8 g/dL. Platelet transfusion is considered for severe thrombocytopenia with platelet count less than 50,000/μL.

  2. Coagulation study

    Tests for prothrombin time (PT), APTT, fibrinogen, and fibrin/fibrinogen degradation products (FDP) (or D-dimer) are recommended for pre-operative screening. When a coagulation abnormality is found, close examination and adequate treatment are required before kidney biopsy. When a thrombotic tendency is pointed out, especially in high-risk patients with nephrotic syndrome, screening tests for deep vein thrombosis and pulmonary embolism are also considered.

  3. Biochemistry

    Serum tests include total protein, albumin, urea nitrogen, creatinine, uric acid, AST, ALT, LDH, and electrolytes (Na, K, Cl, Ca, P, and Mg). Estimated GFR by using serum creatinine or cysteine C values are important to evaluate renal function. Arterial blood gas analysis (including anion gap) is also helpful for the differential diagnosis of kidney diseases with acid–base abnormality.

  4. Blood sugar (glucose) test

    As well as fasting plasma glucose (sugar), HbA1C and glycoalbumin are useful for evaluation of hyperglycemic conditions.

  5. Immunology

    Immunological tests include immunoglobulin (IgG, IgA, IgM, IgG4), complement (CH50, C3, C4), autoantibody (antinuclear antibody, ds-DNA, SM, RNP, ANCA, GBM, anticardiolipin, lupus anticoagulant), serum monoclonal protein.

  6. Endocrinology

    Endocrinological examinations include renin, aldosterone, and BNP.

  7. Tests for infection

    HBV, HCV, syphilis (RPR/TPHA), and HIV are screened.

  8. 4.

    Urinalysis

    1. Urinary qualitative test (dipstick test).

    2. Urinary sediment.

      Dysmorphic erythrocytes suggest hematuria with glomerular diseases.

    3. Urinary quantitative test.

      Urinary protein is measured by using spot urine or 24-h collected urine. NAG, β2MG, and α1MG are useful markers for tubular dysfunction. Selectivity index (SI) is also helpful in the differential diagnosis of nephrotic proteinuria.

  9. 5.

    Imaging test

    Diagnostic imaging includes US, CT, and MRI. Radioisotope examinations are also useful for understanding renal pathophysiology. 99mTc-MAG3, an isotope secreting from proximal tubules, is utilized for evaluating effective renal plasma flow (ERPF) of right and left kidneys. 99mTc-DTPA, an isotope filtrating from glomeruli, is used for the measurement of glomerular filtration rate (GFR) of right and left kidneys.

figureat

Chapter 5. Method of kidney biopsy (technique)

figureau
figureav
figureaw
figureax
  • Setting the patient in lateral jack-knife position, through 3 cm of horizontal incision from 12 rib tip the muscles are divided in each layer to reach the inferior pole of the kidney covered by adipose tissue. Confirming not to damage the peritoneum, the circumrenal fat and Gerota fascia are cut to reach the surface of kidney. The biopsy gun for needle biopsy on the kidney or the wedge incision for block type specimen is used to take a piece of the kidney. After biopsy, hemostasis is securely performed by pressure with the forefinger for 10–15 min. The muscles and skin are closed in layers to finish the procedure. [144, 145].

figureay
figureaz
  • Because hemostasis pressure can be provided surely as compared with a native kidney biopsy, it is not necessary to discontinue the anticoagulant therapy. However, it is desirable to conduct an examination for coagulation system in advance.

  • Under local anesthesia the biopsy needle is put into the kidney to take a piece of the kidney. This may be performed 2–3 times to obtain an adequate specimen.

  • Just after the procedure, the physician presses the puncture area for 10–15 min for hemostasis. After that A 1 kg sandbag is put on the puncture area to maintain pressure for an hour. A small pillow is fixed with elastic tape on the area. Thereafter the patient must lie in bed for 6 h or until seen by the doctor. The patient must pay attention for blood in their urine after the biopsy.

  • The fixing elastic tape will be removed on next morning. Before discharge a blood count, biochemistry test, and urinalysis are examined. The discharge is permitted after having confirmed that there is no hematoma and hydronephrosis around the renal graft by US [147,148,149].

Chapter 6: After care of the biopsy and post procedure observation

Aftercare of the biopsy and postprocedure observation are essential to prevent hemorrhagic complications. After biopsy, bed rest for 6–8 h in an extraneous dressing room is mandated in Europe and America. In Japan, kidney biopsy is performed during hospitalization. Just after the biopsy is performed, pressure is exerted on the back by using both hands and a sandbag for hemostasis. Subsequently, bed rest in the dorsal (supine) position is common [98, 150,151,152,153,154,155,156,157,158,159,160].

figureba
figurebb
figurebc
figurebd
figurebe
figurebf
figurebg
figurebh

Chapter 7: Complications

According to the questionnaire survey results that were performed for the publication of this book, among 21,648 kidney biopsy cases that were performed in Japan, gross hematuria after kidney biopsy was found in 511 patients (2.4%), bladder wash was in 79 cases (0.36%), red blood cell transfusion was in 161 cases (0.74%), renal arterial embolization was in 44 cases (0.22%), and death occurred in one case (0.005%). The underlying cause of death in this case was not due to bleeding after kidney biopsy, but the overall status of this case was confirmed poor before kidney biopsy and worsened after kidney biopsy (Table 5) [1, 4, 5, 66, 74, 156, 169,170,171,172,173,174].

figurebi
figurebj
figurebk
Table 5 Bleeding complications after kidney biopsy
figurebl
figurebm
figurebn
figurebo
figurebp

Chapter 8: Histological evaluation of kidney biopsy specimen

Kidney biopsy remains the gold standard to diagnose renal disease and evaluate acute and chronic renal damages. Specimens are processed for the diagnostic approach of light microscopy (LM), immunostaining by immunofluorescence (IF) or immunohistochemistry, and electron microscopy (EM). To minimize the bleeding risk, less passes to obtain tissue is desirable; on the other hand, sufficient quantity of tissue is required for definite diagnosis. When small sample size of renal tissues was obtained, dividing samples appropriately into LM, IF, and EM studies should be carefully considered (Fig. 2).

figurebq
figurebr
figurebs
figurebt
Fig. 2
figure2

How to divide a sample of the kidney biopsy

figurebu
figurebv
figurebw

Chapter 9: Kidney biopsy in children

Kidney biopsy in the pediatric population was reported for the first time in 1958 and has a history of more than 60 years [204]. The procedure has become relatively safe in children as well as in adults owing to technical advances and improvement of medical devices. However, the indication for kidney biopsy must be carefully determined based on benefits and potential risks for serious bleeding complications.

Indication of kidney biopsy (Table 6)

Table 6 Indication of kidney biopsy in children
figurebx
figureby
figurebz
figureca
figurecb
figurecc

Kidney biopsy for clinical condition with high risk

Kidney biopsy is indicated according to adult criteria [214].

Pre-biopsy evaluation

We may need sedation or general anesthesia in children. Therefore, it is necessary to evaluate the airway and the overall status (underlying disease) beforehand.

figurecd
figurece
figurecf

Informed consent for kidney biopsy, explanation about kidney biopsy

figurecg
figurech
figureci

Method of kidney biopsy (technique)

figurecj
figureck
figurecl

Sedation

figurecm
figurecn
figureco
figurecp
figurecq
  1. 1.

    Ketamine (Ketalar) (initial dose, 1–2 mg/kg): duration of action is 5–10 min.

  2. 2.

    Midazolam (Dormicum) (initial dose, 0.05–0.1 mg/kg): half-life in blood is 0.8–1.8 h.

  3. 3.

    Pentazocine (Sosegon) (initial dose, 0.5–1.5 mg/kg): half-life in blood is 3–4 h

  4. 4.

    Thiopental (Ravonal), Thiamylal (Isozol) (initial dose, 4–6 mg/kg): duration of action is ten minutes.

  5. 5.

    Propofol (Diprivan) (initial dose, infants 3–5 mg/kg, older children 2.5–3 mg/kg): duration of action is 5–15 min.

After care of the biopsy and post procedure observation

figurecr
figurecs
figurect
figurecu
figurecv

Complications

figurecw

Chapter 10: Biopsy of transplanted kidney

For the long-term engraftment after the renal transplant, early detection and early treatment for rejection or early detection of the side effect with the immunosuppressive drug are important. Because treatment totally varies according to clinical condition, the pathological evaluation of the renal graft tissue is important in treatment strategy decision. These clinical conditions occur asymptomatically and may progress.

figurecx
  1. 1.

    Episode biopsy: Transplant kidney biopsy is generally performed when an acute renal allograft rejection is suspected within a year after operation. The main clinical indicator is an increase in serum creatinine levels of 20% above a baseline value. Furthermore, a year after operation, for patients with renal dysfunction or proteinuria, the following diseases are clarified by kidney biopsy; chronic allograft nephropathy (CAN), chronic rejection (antibody-mediated rejection and T cell-mediated rejection), recurrence of underlying disease and calcineurin inhibitors nephrotoxicity [76, 149, 249].

  2. 2.

    Protocol biopsy: kidney biopsy is performed at the renal transplant surgery for 0 h (just after perfusion of the isolated kidney), an hour (after renal graft blood flow resumption), at post transplantation 2–3 months, and at a year after. Whether immunosuppressive therapy is appropriate, asymptomatic acute rejection occurs, or underlying disease recurs can be determined.

figurecy
figurecz

Chapter 11: Open (surgical) kidney biopsy and laparoscopic kidney biopsy

figureda

Surgeons directly look at the surface of the kidneys and determine the area from which the tissue samples should be taken. There are two type of methods including a needle biopsy and wedge biopsy. The incidence of severe bleeding of renal surface is very low, and mortality is rare, but the risk of hemorrhage into the urinary tract exists. Attention is necessary for the development of renal arteriovenous fistula (arteriovenous fistula: AVF) causing bleeding to the urinary tract. Other relatively minor postoperative complications including fever, atelectasis, and ileus can occur. In addition, an open biopsy under general anesthesia is associated with a longer hospital stay and a larger surgical scar. On wedge biopsy, the specimens may increase the proportion of shallow layer of the cortex resulting in less information of the cortex deep part and medulla [4].

figuredb
figuredc
  • As for the complications peculiar to laparoscopic kidney biopsy, nephric subcapsular hematoma, subcutaneous emphysema, peritoneal injury, and injury of the circumference organ are reported.

  • An advantage of laparoscopic kidney biopsy in comparison with the percutaneous kidney biopsy includes certain sampling of renal tissue as well as confirmation and hemostasis of a bleeding point.

  • An advantage of laparoscopic kidney biopsy in comparison to open kidney biopsy includes shortening of the hospital stay, pain reduction, and compatibility of the incised wound [4].

Abbreviations

APTT:

Activated partial thromboplastin time

ANCA:

Antineutrophil cytoplasmic antibody

BP:

Blood pressure

CKD:

Chronic kidney disease

CT:

Computed tomography

DKD:

Diabetic kidney disease

ds-DNA:

Double-stranded DNA antibodies

DM:

Diabetes mellitus

EM:

Electron microscopy

EGPA:

Eosinophilic granulomatosis with polyangiitis

EB virus:

Epstein–Barr virus

EBER:

Epstein–Barr virus-encoded small RNA

FDP:

Fibrin/fibrinogen degradation products

FSGS:

Focal segmental glomerulosclerosis

GBM:

Glomerular basement membrane

GPA:

Granulomatosis with polyangiitis

HBV:

Hepatitis B virus

HCV:

Hepatitis C virus

HUS:

Hemolytic-uremic syndrome

HIV:

Human immunodeficiency virus

IF:

Immunofluorescence microscopy

ISH:

In situ hybridization

LM:

Light microscopy

MRI:

Magnetic resonance imaging

MPA:

Microscopic polyangiitis

MN:

Membranous nephropathy

MCNS:

Minimal change nephrotic syndrome

NAG:

N-Acetyl-β-d-glucosaminidase

PT:

Prothrombin time

PCR:

Polymerase chain reaction

RNP:

Anti ribonucleoprotein antibody

SI:

Selectivity index

SM:

Anti-Smith (anti-Sm) antibody

SLE:

Systemic lupus erythematosus

TMA:

Thrombotic microangiopathy

TTP:

Thrombotic thrombocytopenic purpura

TAFRO:

Thrombocytopenia, anasarca, myelofibrosis, renal dysfunction, and organomegaly

US:

Ultrasonography

α1MG:

α1-Microglobulin

β2MG:

β2-Microglobulin

References

  1. 1.

    Japanese Society of Nephrology. Guidebook of the kidney biopsy. Tokyo: Tokyo-Igakusha; 2004. (In Japanese).

    Google Scholar 

  2. 2.

    Salama AD, Cook HT. The kidney biopsy. In: Skorecki K, Chertow GM, Marsden PA, Taal MW, Yu AS, editors. Brenner & Rector’s The Kidney. 10th ed. New York: Elsevier; 2016.

    Google Scholar 

  3. 3.

    Dhaun N, Bellamy CO, Cattran DC, Kluth DC. Utility of kidney biopsy in the clinical management of renal disease. Kidney Int. 2014;85:1039–48.

    PubMed  Article  Google Scholar 

  4. 4.

    Kawaguchi T, Nagasawsa T, Tsuruya K, Miura K, Katsuno T, Morikawa T, Ishikawa E, Ogura M, Matsumura H, Kurayama R, Matsumoto S, Marui Y, Hara S, Maruyama S, Narita I, Okada H, Ubara Y, Committee of Practical Guide for Kidney Biopsy 2019. Correction to: A nationwide survey on clinical practice patterns and bleeding complications of percutaneous native kidney biopsy in Japan. Clin Exp Nephrol. 2020a;24(5):389–401.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. 5.

    Kawaguchi T, Nagasawsa T, Tsuruya K, Miura K, Katsuno T, Morikawa T, Ishikawa E, Ogura M, Matsumura H, Kurayama R, Matsumoto S, Marui Y, Hara S, Maruyama S, Narita I, Okada H, Ubara Y, Committee of Practical Guide for Kidney Biopsy 2019. A nationwide survey on clinical practice patterns and bleeding complications of percutaneous native kidney biopsy in Japan. Clin Exp Nephrol. 2020b;24(5):402–3.

    PubMed  PubMed Central  Article  Google Scholar 

  6. 6.

    Yamagata K, Takahashi H, Tomida C, Yamagata Y, Koyama A. Prognosis of asymptomatic hematuria and/or proteinuria in men. High prevalence of IgA nephropathy among proteinuric patients found in mass screening. Nephron. 2002;91:34–42.

    PubMed  Article  Google Scholar 

  7. 7.

    Kawamura T, Ohta T, Ohno Y, Wakai K, Aoki R, Tamakoshi A, Maeda K, Mizuno Y. Significance of urinalysis for subsequent kidney and urinary tract disorders in mass screening of adults. Intern Med. 1995;34:475–80.

    CAS  PubMed  Article  Google Scholar 

  8. 8.

    Nieuwhof C, Doorenbos C, Grave W, de Heer F, de Leeuw P, Zeppenfeldt E, van Breda Vriesman PJ. A prospective study of the natural history of idiopathic non-proteinuric hematuria. Kidney Int. 1996;49:222–5.

    CAS  PubMed  Article  Google Scholar 

  9. 9.

    Vivante A, Afek A, Frenkel-Nir Y, Tzur D, Farfel A, Golan E, Chaiter Y, Shohat T, Skorecki K, Calderon-Margalit R. Persistent asymptomatic isolated microscopic hematuria in Israeli adolescents and young adults and risk for end-stage renal disease. JAMA. 2011;306:729–36.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Richards NT, Darby S, Howie AJ, Adu D, Michael J. Knowledge of renal histology alters patient management in over 40% of cases. Nephrol Dial Transplant. 1994;9:1255–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Iseki K, Ikemiya Y, Iseki C, Takishita S. Proteinuria and the risk of developing end-stage renal disease. Kidney Int. 2003a;63:1468–74.

    PubMed  Article  PubMed Central  Google Scholar 

  12. 12.

    Iseki K, Ikemiya Y, Iseki C, Takishita S. The okinawa screening program. J Am Soc Nephrol. 2003b;14(7 Suppl 2):S127-130.

    PubMed  Article  PubMed Central  Google Scholar 

  13. 13.

    Berden AE, Ferrario F, Hagen EC, Jayne DR, Jennette JC, Joh K, Neumann I, Noël LH, Pusey CD, Waldherr R, Bruijn JA, Bajema IM. Histopathologic classification of ANCA-associated glomerulonephritis. J Am Soc Nephrol. 2010;21:1628–36.

    PubMed  Article  PubMed Central  Google Scholar 

  14. 14.

    Muso E, Endo T, Itabashi M, Kakita H, Iwasaki Y, Tateishi Y, Komiya T, Ihara T, Yumura W, Sugiyama T, Joh K, Suzuki K. Evaluation of the newly proposed simplified histological classification in Japanese cohorts of myelo-peroxidase-anti-neutrophil cytoplasmic antibody-associated glomerulonephritis in comparison with other Asian and European cohorts. Clin Exp Nephrol. 2013;17:659–62.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  15. 15.

    Berden AE, Jones RB, Erasmus DD, Walsh M, Noël LH, Ferrario F, Waldherr R, Bruijn JA, Jayne DR, Bajema IM, European Vasculitis Society. Tubular lesions predict renal outcome in antineutrophil cytoplasmic antibody-associated glomerulo-nephritis after rituximab therapy. J Am Soc Nephrol. 2012;23:313–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  16. 16.

    Merkel F, Pullig O, Marx M, Netzer KO, Weber M. Course and prognosis of anti-basement membrane antibody (anti-BM-Ab)-mediated disease: report of 35 cases. Nephrol Dial Transplant. 1994;9:372–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Levy JB, Turner AN, Rees AJ, Pusey CD. Long-term outcome of anti-glomerular basement membrane antibody disease treated with plasma exchange and immunosuppression. Ann Intern Med. 2001;134:1033–42.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  18. 18.

    Alchi B, Griffiths M, Sivalingam M, Jayne D, Farrington K. Predictors of renal and patient outcomes in anti-GBM disease: clinicopathologic analysis of a two-centre cohort. Nephrol Dial Transplant. 2015;30:814–21.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  19. 19.

    Kellum JA, Lameire N, KDIGO AKI Guideline Work Group. Diagnosis, evaluation, and management of acute kidney injury: a KDIGO summary (Part 1). Crit Care. 2013;17:204.

    PubMed  PubMed Central  Article  Google Scholar 

  20. 20.

    Palevsky PM, Zhang JH, O’Connor TZ, Chertow GM, Crowley ST, Choudhury D, Finkel K, Kellum JA, Paganini E, Schein RM, Smith MW, Swanson KM, Thompson BT, Vijayan A, Watnick S, Star RA, Peduzzi P. Intensity of renal support in critically ill patients with acute kidney injury". N Engl J Med. 2008;359:7–20.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  21. 21.

    Weening JJ, D’Agati VD, Schwartz MM, Seshan SV, Alpers CE, Appel GB, Balow JE, Bruijn JA, Cook T, Ferrario F, Fogo AB, Ginzler EM, Hebert L, Hill G, Hill P, Jennette JC, Kong NC, Lesavre P, Lockshin M, Looi LM, Makino H, Moura LA, Nagata M, International Society of Nephrology Working Group on the Classification of Lupus Nephritis. The classification of glomerulonephritis in systemic lupus erythematosus revisited. J Am Soc Nephrol. 2004;15:241–50.

    PubMed  Article  PubMed Central  Google Scholar 

  22. 22.

    Parikh SV, Rovin BH. Current and emerging therapies for lupus nephritis. J Am Soc Nephrol. 2016;27:2929–39.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  23. 23.

    Almaani S, Meara A, Rovin BH. Update on lupus nephritis. Clin J Am Soc Nephrol. 2017;12:825–35.

    PubMed  Article  PubMed Central  Google Scholar 

  24. 24.

    Toriu N, Sawa N, Oguro M, Mizuno H, Oshima Y, Hasegawa E, Sumida K, Suwabe T, Kawada M, Ueno T, Hayami N, Sekine A, Hiramatsu R, Yamanouchi M, Hoshino J, Takaichi K, Ohashi K, Fujii T, Yanagita M, Ubara Y. Renal-limited cryoglobulinemic vasculitis: two case reports. Intern Med. 2018;57(13):1879–86.

    PubMed  PubMed Central  Article  Google Scholar 

  25. 25.

    Endo A, Hoshino J, Suwabe T, Sumida K, Mise K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Sawa N, Takaichi K, Ohashi K, Fujii T, Ubara Y. Significance of small renal artery lesions in patients with antineutrophil cytoplasmic antibody-associated glomerulonephritis. J Rheumatol. 2014;41(6):1140–6.

    PubMed  Article  PubMed Central  Google Scholar 

  26. 26.

    Mahajan SK, Ordóñez NG, Feitelson PJ, Lim VS, Spargo BH, Katz AI. Lupus nephropathy without clinical renal involvement. Medicine (Baltimore). 1977;56:493–501.

    CAS  Article  Google Scholar 

  27. 27.

    Wada Y, Ito S, Ueno M, Nakano M, Arakawa M, Gejyo F. Renal outcome and predictors of clinical renal involvement in patients with silent lupus nephritis. Nephron Clin Pract. 2004;98:c105-111.

    PubMed  Article  PubMed Central  Google Scholar 

  28. 28.

    Wakasugi D, Gono T, Kawaguchi Y, Hara M, Koseki Y, Katsumata Y, Hanaoka M, Yamanaka H. Frequency of class III and IV nephritis in systemic lupus erythematosus without clinical renal involvement: an analysis of predictive measures. J Rheumatol. 2012;39:79–85.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  29. 29.

    Hasegawa J, Hoshino J, Sekine A, Hayami N, Suwabe T, Sumida K, Mise K, Ueno T, Yamanouchi M, Hazue R, Sawa N, Ohashi K, Fujii T, Takaichi K, Ubara Y. Clinical and pathological features of anti-neutrophil cytoplasmic antibody-associated vasculitis in patients with minor urinary abnormalities. Nephrology (Carlton). 2018;23:1007–12.

    CAS  Article  Google Scholar 

  30. 30.

    Hoshino J, Furuichi K, Yamanouchi M, Mise K, Sekine A, Kawada M, Sumida K, Hiramatsu R, Hasegawa E, Hayami N, Suwabe T, Sawa N, Hara S, Fujii T, Ohashi K, Kitagawa K, Toyama T, Shimizu M, Takaichi K, Ubara Y, Wada T. A new pathological scoring system by the Japanese classification to predict renal outcome in diabetic nephropathy. PLoS ONE. 2018;13:e0190923.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. 31.

    Toriu N, Yamanouchi M, Hiramatsu R, Hayami N, Hoshino J, Sekine A, Kawada M, Hasegawa E, Suwabe T, Sumida K, Ueno T, Sawa N, Ohashi K, Fujii T, Takaichi K, Yanagita M, Kobayasi T, Ubara Y. Preservation of renal function by intensive glycemic control. Endocrinol Diabetes Metab Case Rep. 2018;2018:17–0136.

    PubMed  PubMed Central  Google Scholar 

  32. 32.

    Yamanouchi M, Hoshino J, Ubara Y, Takaichi K, Kinowaki K, Fujii T, Ohashi K, Mise K, Toyama T, Hara A, Kitagawa K, Shimizu M, Furuichi K, Wada T. Value of adding the renal pathological score to the kidney failure risk equation in advanced diabetic nephropathy. PLoS ONE. 2018;13:e0190930.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  33. 33.

    Furuichi K, Shimizu M, Yuzawa Y, Hara A, Toyama T, Kitamura H, Suzuki Y, Sato H, Uesugi N, Ubara Y, Hohino J, Hisano S, Ueda Y, Nishi S, Yokoyama H, Nishino T, Kohagura K, Ogawa D, Mise K, Shibagaki Y, Makino H, Matsuo S, Wada T, Research Group of Diabetic Nephropathy, Ministry of Health, Labour and Welfare of Japan, and Japan Agency for Medical Research and Development. Clinicopathological analysis of biopsy-proven diabetic nephropathy based on the Japanese classification of diabetic nephropathy. Clin Exp Nephrol. 2018;22:570–82.

    PubMed  Article  PubMed Central  Google Scholar 

  34. 34.

    Mise K, Ueno T, Hoshino J, Hazue R, Sumida K, Yamanouchi M, Hayami N, Suwabe T, Hiramatsu R, Hasegawa E, Sawa N, Fujii T, Hara S, Wada J, Makino H, Takaichi K, Ohashi K, Ubara Y. Nodular lesions in diabetic nephropathy: collagen staining and renal prognosis. Diabetes Res Clin Pract. 2017;127:187–97.

    PubMed  Article  PubMed Central  Google Scholar 

  35. 35.

    Furuichi K, Yuzawa Y, Shimizu M, Hara A, Toyama T, Kitamura H, Suzuki Y, Sato H, Uesugi N, Ubara Y, Hisano S, Ueda Y, Nishi S, Yokoyama H, Nishino T, Kohagura K, Ogawa D, Mise K, Shibagaki Y, Kimura K, Haneda M, Makino H, Matsuo S, Wada T. Nationwide multicentre kidney biopsy study of Japanese patients with type 2 diabetes. Nephrol Dial Transplant. 2018;33:138–48.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  36. 36.

    Hoshino J, Mise K, Ueno T, Imafuku A, Kawada M, Sumida K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Suwabe T, Sawa N, Hara S, Fujii T, Ohashi K, Ubara Y, Takaichi K. A pathological scoring system to predict renal outcome in diabetic nephropathy. Am J Nephrol. 2015;41:337–44.

    PubMed  Article  PubMed Central  Google Scholar 

  37. 37.

    Mise K, Hoshino J, Ueno T, Sumida K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Suwabe T, Sawa N, Fujii T, Hara S, Ohashi K, Takaichi K, Ubara Y. Clinical implications of linear immunofluorescent staining for immunoglobulin G in patients with diabetic nephropathy. Diabetes Res Clin Pract. 2014;106:522–30.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  38. 38.

    Mise K, Hoshino J, Ubara Y, Sumida K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Suwabe T, Sawa N, Fujii T, Ohashi K, Hara S, Takaichi K. Renal prognosis a long time after kidney biopsy on patients with diabetic nephropathy. Nephrol Dial Transplant. 2014;29:109–18.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  39. 39.

    Mise K, Yamaguchi Y, Hoshino J, Ueno T, Sekine A, Sumida K, Yamanouchi M, Hayami N, Suwabe T, Hiramatsu R, Hasegawa E, Sawa N, Fujii T, Hara S, Sugiyama H, Makino H, Wada J, Ohashi K, Takaichi K, Ubara Y. Paratubular basement membrane insudative lesions predict renal prognosis in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. PLoS ONE. 2017;12:e0183190.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. 40.

    Mise K, Hoshino J, Ueno T, Hazue R, Hasegawa J, Sekine A, Sumida K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Suwabe T, Sawa N, Fujii T, Hara S, Ohashi K, Takaichi K, Ubara Y. Prognostic value of tubulointerstitial lesions, urinary N-acetyl-β-d-glucosaminidase, and urinary β2-microglobulin in patients with type 2 diabetes and biopsy-proven diabetic nephropathy. Clin J Am Soc Nephrol. 2016;11:593–601.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  41. 41.

    Mise K, Hoshino J, Ueno T, Imafuku A, Kawada M, Sumida K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Suwabe T, Sawa N, Fujii T, Hara S, Ohashi K, Takaichi K, Ubara Y. Impact of tubulointerstitial lesions on anaemia in patients with biopsy-proven diabetic nephropathy. Diabet Med. 2015;32:546–55.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  42. 42.

    Moriya T, Omura K, Matsubara M, Yoshida Y, Hayama K, Ouchi M. Arteriolar hyalinosis predicts increase in albuminuria and GFR Decline in Normo- and micro-albuminuric japanese patients with type 2 diabetes. Diabetes Care. 2017;40:1373–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  43. 43.

    Mazzucco G, Bertani T, Fortunato M, Bernardi M, Leutner M, Boldorini R, Monga G. Different patterns of renal damage in type 2 diabetes mellitus: a multicentric study on 393 biopsies. Am J Kidney Dis. 2002;39:713–20.

    PubMed  Article  PubMed Central  Google Scholar 

  44. 44.

    Sharma SG, Bomback AS, Radhakrishnan J, Herlitz LC, Stokes MB, Markowitz GS, D’Agati VD. The modern spectrum of kidney biopsy findings in patients with diabetes. Clin J Am Soc Nephrol. 2013;8:1718–24.

    PubMed  PubMed Central  Article  Google Scholar 

  45. 45.

    Nair R, Bell JM, Walker PD. Kidney biopsy in patients aged 80 years and older. Am J Kidney Dis. 2004;44:618–26.

    PubMed  Article  PubMed Central  Google Scholar 

  46. 46.

    Omokawa A, Komatsuda A, Nara M, Fujiwara T, Sato R, Togashi M, Okuyama S, Sawada K, Wakui H. Kidney biopsy in patients aged 80 years and older: a single-center experience in Japan. Clin Nephrol. 2012;77:461–7.

    PubMed  Article  PubMed Central  Google Scholar 

  47. 47.

    Moutzouris DA, Herlitz L, Appel GB, Markowitz GS, Freudenthal B, Radhakrishnan J, D’Agati VD. Kidney biopsy in the very elderly. Clin J Am Soc Nephrol. 2009;4:1073–82.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  48. 48.

    Bomback AS, Appel GB, Radhakrishnan J, Shirazian S, Herlitz LC, Stokes B, D’Agati VD, Markowitz GS. ANCA-associated glomerulonephritis in the very elderly. Kidney Int. 2011;79:757–64.

    PubMed  Article  PubMed Central  Google Scholar 

  49. 49.

    Savige J, Gregory M, Gross O, Kashtan C, Ding J, Flinter F. Expert guidelines for the management of Alport syndrome and thin basement membrane nephropathy. J Am Soc Nephrol. 2013;24(3):364–75.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  50. 50.

    Imafuku A, Nozu K, Sawa N, Hasegawa E, Hiramatsu R, Kawada M, Hoshino J, Tanaka K, Ishii Y, Takaichi K, Fujii T, Ohashi K, Iijima K, Ubara Y. Autosomal dominant form of type IV collagen nephropathy exists among patients with hereditary nephritis difficult to diagnose clinicopathologically. Nephrology (Carlton). 2018;23:940–7.

    CAS  Article  Google Scholar 

  51. 51.

    Imafuku A, Nozu K, Sawa N, Nakanishi K, Ubara Y. How to resolve confusion in the clinical setting for the diagnosis of heterozygous COL4A3 or COL4A4 gene variants? Discussion and suggestions from nephrologists. Clin Exp Nephrol. 2020;24:651–6.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. 52.

    Nachman PH. Repeat kidney biopsy for lupus nephritis: an important step forward. Kidney Int. 2018;94:659–61.

    PubMed  Article  PubMed Central  Google Scholar 

  53. 53.

    De Rosa M, Azzato F, Toblli JE, De Rosa G, Fuentes F, Nagaraja HN, Nash R, Rovin BH. A prospective observational cohort study highlights kidney biopsy findings of lupus nephritis patients in remission who flare following withdrawal of maintenance therapy. Kidney Int. 2018;94:788–94.

    PubMed  Article  PubMed Central  Google Scholar 

  54. 54.

    Pakozdi A, Pyne D, Sheaff M, Rajakariar R. Utility of a repeat kidney biopsy in lupus nephritis: a single centre experience. Nephrol Dial Transplant. 2018;33:507–13.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  55. 55.

    Hruskova Z, Honsova E, Berden AE, Rychlik I, Lanska V, Zabka J, Bajema IM, Tesar V. Repeat protocol kidney biopsy in ANCA-associated renal vasculitis. Nephrol Dial Transplant. 2014;29:1728–32.

    PubMed  Article  PubMed Central  Google Scholar 

  56. 56.

    Shima Y, Nakanishi K, Kamei K, Togawa H, Nozu K, Tanaka R, Sasaki S, Iijima K, Yoshikawa N. Disappearance of glomerular IgA deposits in childhood IgA nephropathy showing diffuse mesangial proliferation after 2 years of combination/prednisolone therapy. Nephrol Dial Transplant. 2011;26:163–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  57. 57.

    Shen XH, Liang SS, Chen HM, Le WB, Jiang S, Zeng CH, Zhou ML, Zhang HT, Liu ZH. Reversal of active glomerular lesions after immunosuppressive therapy in patients with IgA nephropathy: a repeat-biopsy based observation. J Nephrol. 2015;28:441–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  58. 58.

    Ahmad H, Tejani A. Predictive value of repeat renal biopsies in children with nephrotic syndrome. Nephron. 2000;84:342–6.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  59. 59.

    Zhong Y, Xu F, Li X, Chen H, Liang S, Zhu X, Liu Z, Zeng C. The evolution of morphological variants of focal segmental glomerulosclerosis: a repeat biopsy-based observation. Nephrol Dial Transplant. 2016;31:87–95.

    PubMed  Article  Google Scholar 

  60. 60.

    Ubara Y, Hara S, Katori H, Tagami T, Kitamura A, Yokota M, Matsushita Y, Takemoto F, Yamada A, Nagahama K, Hara M, Chayama K. Splenectomy may improve the glomerulopathy of type II mixed cryoglobulinemia. Am J Kidney Dis. 2000;35:1186–92.

    CAS  PubMed  Article  Google Scholar 

  61. 61.

    Iwadate D, Hasegawa E, Hoshino J, Hayami N, Sumida K, Yamanouchi M, Sekine A, Kawada M, Hiramatsu R, Suwabe T, Sawa N, Yuasa M, Wake A, Fujii T, Ohashi K, Takaichi K, Ubara Y. The long-term outcomes after VAD plus SCT therapy in a patient with AL amyloidosis and severe factor X deficiency. Intern Med. 2018;57:701–6.

    PubMed  Article  Google Scholar 

  62. 62.

    Ueno T, Kikuchi K, Hazue R, Mise K, Sumida K, Hayami N, Suwabe T, Hoshino J, Sawa N, Arizono K, Hara S, Takaichi K, Fujii T, Ohashi K, Ubara Y. Five sequential evaluations of renal histology in a patient with light chain deposition disease. Intern Med. 2016;55:2993–9.

    PubMed  PubMed Central  Article  Google Scholar 

  63. 63.

    Toriu N, Sawa N, Hiramatsu R, Mizuno H, Ikuma D, Sekine A, Hayami N, Sumida K, Yamanouchi M, Hasegawa E, Hoshino J, Takaichi K, Wake A, Ohashi K, Fujii T, Ubara Y. Regression of renal amyloid deposits by VAD therapy plus autologous stem cell transplantation in a patient with primary AL amyloidosis. CEN Case Rep. 2020;9(1):6–10.

    PubMed  Article  Google Scholar 

  64. 64.

    Health and Public Policy Committee. American College of Physicians. Clinical competence in percutaneous kidney biopsy. Ann Intern Med. 1988;108:301–3.

    Article  Google Scholar 

  65. 65.

    Doyle AJ, Gregory MC, Terreros DA. Percutaneous native kidney biopsy: comparison of a 1.2-mm spring-driven system with a traditional 2-mm hand-driven system. Am J Kidney Dis. 1994;23:498–503.

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Hogan JJ, Mocanu M, Berns JS. The native kidney biopsy: update and evidence for best practice. Clin J Am Soc Nephrol. 2016;11:354–62.

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Fine DM, Arepally A, Hofmann LV, Mankowitz SG, Atta MG. Diagnostic utility and safety of transjugular kidney biopsy in the obese patient. Nephrol Dial Transplant. 2004;19:1798–802.

    PubMed  Article  Google Scholar 

  68. 68.

    Margaryan A, Perazella MA, Mahnensmith RL, Abu-Alfa AK. Experience with outpatient computed tomographic-guided kidney biopsy. Clin Nephrol. 2010;74:440–5.

    CAS  PubMed  Article  Google Scholar 

  69. 69.

    Mukhtar KN, Mahmood SN, Umair SF. CT guided percutaneous kidney biopsy versus ultrasound guided for obtaining adequate tissue. J Pak Med Assoc. 2012;62:880–2.

    PubMed  Google Scholar 

  70. 70.

    McDougal WS, Tolkoff-Rubin NE, Michaelson MD, Mueller PR, Braaten K. Case records of the Massachusetts General Hospital. Case 28-2006. A 59-year-old man with masses in both kidneys. N Engl J Med. 2006;355:1161–7.

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Mizunoe S, Yamasaki T, Tokimatsu I, Kushima H, Matsunaga N, Hashinaga K, Miyazaki Y, Komatsu E, Kadota J. Sarcoidosis associated with renal masses on computed tomography. Intern Med. 2006;45:279–82.

    PubMed  Article  Google Scholar 

  72. 72.

    Ubara Y, Hara S, Katori H, Yamada A, Morii H. Renovascular hypertension may cause nephrotic range proteinuria and focal glomerulosclerosis in contralateral kidney. Clin Nephrol. 1997;48:220–3.

    CAS  PubMed  Google Scholar 

  73. 73.

    Bandari J, Fuller TW, Turner Ii RM, D’Agostino LA. kidney biopsy for medical renal disease: indications and contraindications. Can J Urol. 2016a;23:8121–6.

    PubMed  Google Scholar 

  74. 74.

    Corapi KM, Chen JL, Balk EM, Gordon CE. Bleeding complications of native kidney biopsy: a systematic review and meta-analysis. Am J Kidney Dis. 2012;60:62–73.

    PubMed  Article  Google Scholar 

  75. 75.

    Schow DA, Vinson RK, Morrisseau PM. Percutaneous kidney biopsy of the solitary kidney: a contraindication? J Urol. 1992;147:1235–7.

    CAS  PubMed  Article  Google Scholar 

  76. 76.

    Wilczek HE. Percutaneous needle biopsy of the renal allograft. A clinical safety evaluation of 1129 biopsies. Transplantation. 1990;50:790–7.

    CAS  PubMed  Article  Google Scholar 

  77. 77.

    Tøndel C, Vikse BE, Bostad L, Svarstad E. Safety and complications of percutaneous kidney biopsies in 715 children and 8573 adults in Norway 1988–2010. Clin J Am Soc Nephrol. 2012;7:1591–7.

    PubMed  PubMed Central  Article  Google Scholar 

  78. 78.

    Mejía-Vilet JM, Márquez-Martínez MA, Cordova-Sanchez BM, Ibargüengoitia MC, Correa-Rotter R, Morales-Buenrostro LE. Simple risk score for prediction of haemorrhagic complications after a percutaneous kidney biopsy. Nephrology (Carlton). 2018a;23:523–9.

    Article  CAS  Google Scholar 

  79. 79.

    Sumida K, Ubara Y, Marui Y, Nakamura M, Takaichi K, Tomikawa S, Fujii T, Ohashi K. Recurrent proliferative glomerulonephritis with monoclonal IgG deposits of IgG2λ subtype in a trans-planted kidney: a case report. Am J Kidney Dis. 2013;62:587–90.

    PubMed  Article  Google Scholar 

  80. 80.

    Matsunami M, Ubara Y, Sumida K, Oshima Y, Oguro M, Kinoshita K, Tanaka K, Nakamura Y, Kinowaki K, Ohashi K, Fujii T, Igawa T, Sato Y, Ishii Y. The efficacy and safety of anti-interleukin-6 receptor monoclonal blockade in a renal transplant patient with Castleman disease: early post-transplant outcome. BMC Nephrol. 2018;19(1):263.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  81. 81.

    Glenn JF. Analysis of 51 patients with horseshoe kidney. N Engl J Med. 1959;261:684–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  82. 82.

    Satav V, Sabale V, Pramanik P, Kanklia SP, Mhaske S. Percutaneous nephrolithotomy of horseshoe kidney: our institutional experience. Urol Ann. 2018;10:258–62.

    PubMed  PubMed Central  Article  Google Scholar 

  83. 83.

    Glodny B, Petersen J, Hofmann KJ, Schenk C, Herwig R, Trieb T, Koppelstaetter C, Steingruber I, Rehder P. Kidney fusion anomalies revisited: clinical and radiological analysis of 209 cases of crossed fused ectopia and horseshoe kidney. BJU Int. 2009;103:224–35.

    PubMed  Article  PubMed Central  Google Scholar 

  84. 84.

    Hu P, Jin M, Xie Y, Chen P, Zhang X, Yin Z, Cai G, Chen X. Immunoglobulin A nephropathy in horseshoe kidney: case reports and literature review. Nephrology (Carlton). 2014;19:605–9.

    Article  Google Scholar 

  85. 85.

    Chaabouni Y, Guesmi R, Hentati Y, Kammoun K, Hmida MB, Mnif Z, Boudawara T, Hachicha J. Minimal change disease in horseshoe kidney. Pan Afr Med J. 2017;26:243.

    PubMed  PubMed Central  Article  Google Scholar 

  86. 86.

    Sumida K, Ubara Y, Hoshino J, Hayami N, Suwabe T, Hiramatsu R, Hasegawa E, Yamanouchi M, Sawa N, Takaichi K, Ohashi K. Myeloperoxidase-antineutrophil cytoplasmic antibody-associated crescentic glomerulonephritis in autosomal dominant polycystic kidney disease. BMC Nephrol. 2013;14:94.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  87. 87.

    Ito Y, Sekine A, Takada D, Yabuuchi J, Kogure Y, Ueno T, Sumida K, Yamanouchi M, Hayami N, Suwabe T, Hoshino J, Sawa N, Takaichi K, Kinowaki K, Fujii T, Ohashi K, Kikuchi H, Mandai S, Chiga M, Mori T, Sohara E, Uchida S, Ubara Y. Renal histology and MRI findings in a 37-year-old Japanese patient with autosomal recessive polycystic kidney disease. Clin Nephrol. 2017;88:292–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  88. 88.

    Takada D, Sekine A, Yabuuchi J, Kogure Y, Ueno T, Yamanouchi M, Sumida K, Suwabe T, Hayami N, Hoshino J, Takaichi K, Kinowaki K, Fujii T, Ohashi K, Mori T, Sohara E, Uchida S, Ubara Y. Renal histology and MRI in a 25-year-old Japanese man with nephronophthisis 4. Clin Nephrol. 2018;89:223–8.

    PubMed  Article  PubMed Central  Google Scholar 

  89. 89.

    Hirabayashi Y, Ishikawa E, Ito M. Bilateral renal hilar tumors in IgG4-related disease. Clin Exp Nephrol. 2017;21:1131–2.

    PubMed  Article  Google Scholar 

  90. 90.

    Senekjian HO, Stinebaugh BJ, Mattioli CA, Suki WN. Irreversible renal failure following vesicoureteral reflux. JAMA. 1979;241:160–2.

    CAS  PubMed  Article  Google Scholar 

  91. 91.

    Imai T, Yumura W, Takemoto F, Kotoda A, Imai R, Inoue M, Hironaka M, Muto S, Kusano E. A case of IgG4-related tubulointerstitial nephritis with left hydronephrosis after a remission of urinary tract tuberculosis. Rheumatol Int. 2013;33:2141–4.

    PubMed  Article  Google Scholar 

  92. 92.

    Obayashi M, Uzu T, Harada T, Yamato M, Takahara K, Yamauchi A. Two cases of lupus cystitis complicated by lupus nephritis treated successfully with steroid therapy. Nihon Jinzo Gakkai Shi. 2003;45:765–70 (In Japanese).

    PubMed  Google Scholar 

  93. 93.

    Takeuchi Y, Takeuchi E, Kamata K. A possible clue for the production of anti-glomerular basement membrane antibody associated with ureteral obstruction and hydronephrosis. Case Rep Nephrol Dial. 2015;5:87–95.

    PubMed  PubMed Central  Article  Google Scholar 

  94. 94.

    Shibata S, Ubara Y, Sawa N, Tagami T, Hosino J, Yokota M, Katori H, Takemoto F, Hara S, Takaichi K, Fujii A, Murata H, Nishi T. Severe interstitial cystitis associated with Sjögren’s syndrome. Intern Med. 2004;43(3):248–52.

    PubMed  Article  Google Scholar 

  95. 95.

    Nonaka K, Ubara Y, Sumida K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Suwabe T, Hoshino J, Sawa N, Takaichi K, Kuroda Y, Oohashi K. Clinical and pathological evaluation of hypertensive emergency-related nephropathy. Intern Med. 2013;52:45–53.

    CAS  PubMed  Article  Google Scholar 

  96. 96.

    Takada D, Hoshino J, Kikuchi K, Yabuuchi J, Kogure Y, Ueno T, Sekine A, Yamanouchi M, Sumida K, Mise K, Suwabe T, Hayami N, Sawa N, Takaichi K, Hayasi N, Fujii T, Ohashi K, Ubara Y. Anti-RNA polymerase III antibody-associated scleroderma renal crisis in a patient with limited cutaneous systemic sclerosis: a case report. Mod Rheumatol. 2018;28:369–72.

    CAS  PubMed  Article  Google Scholar 

  97. 97.

    Yamanouchi M, Ubara Y, Imafuku A, Kawada M, Koki M, Sumida K, Hiramatsu R, Hasegawa E, Hayami N, Suwabe T, Hoshino J, Sawa N, Ohashi K, Fujii T, Matsuda M, Takaichi K. Malignant nephrosclerosis in a patient with familial Mediterranean fever. Intern Med. 2015;54:2643–6.

    CAS  PubMed  Article  Google Scholar 

  98. 98.

    Shidham GB, Siddiqi N, Beres JA, Logan B, Nagaraja HN, Shidham SG, Piering WF. Clinical risk factors associated with bleeding after native kidney biopsy. Nephrology (Carlton). 2005;10:305–10.

    Article  Google Scholar 

  99. 99.

    Shima N, Sumida K, Kawada M, Sekine A, Yamanouchi M, Hiramatsu R, Hayami N, Hasegawa E, Suwabe T, Hoshino J, Sawa N, Takaichi K, Ohashi K, Fujii T, Ubara Y. Eltrombopag improves refractory thrombocytopenia in a patient with systemic lupus erythematosus. Case Rep Rheumatol. 2018;2018:6305356.

    PubMed  PubMed Central  Google Scholar 

  100. 100.

    Mise K, Ubara Y, Matsumoto M, Sumida K, Hiramatsu R, Hasegawa E, Yamanouchi M, Hayami N, Suwabe T, Hoshino J, Sawa N, Ohashi K, Kokame K, Miyata T, Fujimura Y, Takaichi K. Long term follow up of congenital thrombotic thrombocytopenic purpura (Upshaw–Schulman syndrome) on hemodialysis for 19 years: a case report. BMC Nephrol. 2013;14:156.

    PubMed  PubMed Central  Article  Google Scholar 

  101. 101.

    Sekine A, Hasegawa E, Hiramatsu R, Mise K, Sumida K, Ueno T, Yamanouchi M, Hayami N, Suwabe T, Hoshino J, Sawa N, Takaichi K, Ohashi K, Fujii T, Ubara Y. Two types of renovascular lesions in lupus nephritis with clinical thrombotic thrombocytopenic purpura. Case Rep Nephrol Dial. 2015;5:192–9.

    PubMed  PubMed Central  Article  Google Scholar 

  102. 102.

    Noda-Narita S, Sumida K, Sekine A, Hoshino J, Mise K, Suwabe T, Hayami N, Yamanouchi M, Ueno T, Mizuno H, Kawada M, Hiramatsu R, Hasegawa E, Sawa N, Takaichi K, Ohashi K, Fujii T, Ubara Y. TAFRO syndrome with refractory thrombocytopenia responding to tocilizumab and romiplostim: a case report. CEN Case Rep. 2018;7:162–8.

    PubMed  PubMed Central  Article  Google Scholar 

  103. 103.

    Mizuno H, Sawa N, Watanabe S, Ikuma D, Sekine A, Kawada M, Yamanouchi M, Hasegawa E, Suwabe T, Hoshino J, Takaichi K, Kinowaki K, Fujii T, Ohashi K, Nagata M, Yamaguchi Y, Ubara Y. The clinical and histopathological feature of renal manifestation of TAFRO syndrome. Kidney Int Rep. 2020;5(8):1172–9.

    PubMed  PubMed Central  Article  Google Scholar 

  104. 104.

    Simard-Meilleur MC, Troyanov S, Roy L, Dalaire E, Brachemi S. Risk factors and timing of native kidney biopsy complications. Nephron Extra. 2014;4:42–9.

    PubMed  PubMed Central  Article  Google Scholar 

  105. 105.

    Piccoli GB, Daidola G, Attini R, Parisi S, Fassio F, Naretto C, Deagostini MC, Castelluccia N, Ferraresi M, Roccatello D, Todros T. Kidney biopsy in pregnancy: evidence for counselling? A systematic narrative review. BJOG. 2013;120:412–27.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  106. 106.

    Blom K, Odutayo A, Bramham K, Hladunewich MA. Pregnancy and glomerular disease: a systematic review of the literature with management guidelines. Clin J Am Soc Nephrol. 2017;12:1862–72.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  107. 107.

    Davison JM, Dunlop W. Renal hemodynamics and tubular function normal human pregnancy. Kidney Int. 1980;18:152–61.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  108. 108.

    Higby K, Suiter CR, Phelps JY, Siler-Khodr T, Langer O. Normal values of urinary albumin and total protein excretion during pregnancy. Am J Obstet Gynecol. 1994;171:984–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  109. 109.

    Li Y, Wang W, Wang Y, Chen Q. Fetal risks and maternal renal complications in pregnancy with preexisting chronic glomerulonephritis. Med Sci Monit. 2018;24:1008–16.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  110. 110.

    Piccoli GB, Cabiddu G, Attini R, Vigotti FN, Maxia S, Lepori N, Tuveri M, Massidda M, Marchi C, Mura S, Coscia A, Biolcati M, Gaglioti P, Nichelatti M, Pibiri L, Chessa G, Pani A, Todros T. Risk of adverse pregnancy outcomes in women with CKD. J Am Soc Nephrol. 2015;26:2011–22.

    PubMed  PubMed Central  Article  Google Scholar 

  111. 111.

    Limardo M, Imbasciati E, Ravani P, Surian M, Torres D, Gregorini G, Magistroni R, Casellato D, Gammaro L, Pozzi C, Rene e Gravidanza Collaborative Group of the Italian Society of Nephrology. Pregnancy and progression of IgA nephropathy: results of an Italian multicenter study. Am J Kidney Dis. 2010;56:506–12.

    PubMed  Article  Google Scholar 

  112. 112.

    Caritis S, Sibai B, Hauth J, Lindheimer MD, Klebanoff M, Thom E, VanDorsten P, Landon M, Paul R, Miodovnik M, Meis P, Thurnau G. Low-dose aspirin to prevent preeclampsia in women at high risk. National Institute of Child Health and Human Development Network of Maternal-Fetal Medicine Units. N Engl J Med. 1998;338:701–5.

    CAS  PubMed  Article  Google Scholar 

  113. 113.

    Bujold E, Roberge S, Lacasse Y, Bureau M, Audibert F, Marcoux S, Forest JC, Giguère Y. Prevention of preeclampsia and intrauterine growth restriction with aspirin started in early pregnancy: a meta-analysis. Obstet Gynecol. 2010;116(2 Pt 1):402–14.

    PubMed  Article  Google Scholar 

  114. 114.

    Lindheimer MD, Spargo BH, Katz AI. Kidney biopsy in pregnancy-induced hypertension. J Reprod Med. 1975;15:189–94.

    CAS  PubMed  Google Scholar 

  115. 115.

    Ochsenbein-Kölble N, Roos M, Gasser T, Huch R, Huch A, Zimmermann R. Cross sectional study of automated blood pressure measurements throughout pregnancy. BJOG. 2004;111:319–25.

    PubMed  Article  Google Scholar 

  116. 116.

    Radisic MV, Feldman D, Diaz C, Froment RO. Unexplained hematuria during pregnancy: right-sided nutcracker phenomenon. Int Urol Nephrol. 2007;39:709–11.

    PubMed  Article  Google Scholar 

  117. 117.

    Motha MB, Palihawadana TS, Dias TD, Wijesinghe PS. Nutcracker syndrome in pregnancy: a worrying presentation of a benign condition. Ceylon Med J. 2017;62:238–9.

    CAS  PubMed  Article  Google Scholar 

  118. 118.

    Silverman SG, Gan YU, Mortele KJ, Tuncali K, Cibas ES. Renal masses in the adult patient: the role of percutaneous biopsy. Radiology. 2006;240:6–22.

    PubMed  Article  Google Scholar 

  119. 119.

    Smith EH. Complications of percutaneous abdominal fine-needle biopsy. Rev Radiol. 1991;178:253–8.

    CAS  Article  Google Scholar 

  120. 120.

    Gordetsky J, Eich ML, Garapati M, Del Pena MCR, Rais-Bahrami S. Active surveillance of small renal masses. Urology. 2019;123:157–66.

    PubMed  Article  Google Scholar 

  121. 121.

    Sawa N, Ubara Y, Katori H, Hoshino J, Suwabe T, Tagami T, Takemoto F, Miyakoshi S, Taniguchi S, Ohashi K, Takaichi K. Renal intravascular large B-cell lymphoma localized only within peritubular capillaries. Report of a case. Intern Med. 2007;46:657–62.

    PubMed  Article  PubMed Central  Google Scholar 

  122. 122.

    Hasegawa J, Hoshino J, Suwabe T, Hayami N, Sumida K, Mise K, Ueno T, Sawa N, Wake A, Ohashi K, Fujii T, Honda K, Takaichi K, Ubara Y. Characteristics of intravascular large B-cell lymphoma limited to the glomerular capillaries: a case report. Case Rep Nephrol Dial. 2015;5:173–9.

    PubMed  PubMed Central  Article  Google Scholar 

  123. 123.

    Biondi-Zoccai GG, Lotrionte M, Agostoni P, Abbate A, Fusaro M, Burzotta F, Testa L, Sheiban I, Sangiorgi G. A systematic review and meta-analysis on the hazards of discontinuing or not adhering to aspirin among 50,279 patients at risk for coronary artery disease. Eur Heart J. 2006;27:2667–74.

    PubMed  Article  Google Scholar 

  124. 124.

    Lees JS, McQuarrie EP, Mordi N, Geddes CC, Fox JG, Mackinnon B. Risk factors for bleeding complications after nephrologist-performed native kidney biopsy. Clin Kidney J. 2017;10:573–7.

    PubMed  PubMed Central  Article  Google Scholar 

  125. 125.

    Fujimoto K, Fujishiro M, Kato M, Higuchi K, Iwakiri R, Sakamoto C, Uchiyama S, Kashiwagi A, Ogawa H, Murakami K, Mine T, Yoshino J, Kinoshita Y, Ichinose M, Matsui T, Japan Gastroenterological Endoscopy Society. Guidelines for gastroenterological endoscopy in patients undergoing antithrombotic treatment. Dig Endosc. 2014;26(1):1–14.

    PubMed  Article  Google Scholar 

  126. 126.

    Fernandez Lynch H, Joffe S, Feldman EA. Informed consent and the role of the treating physician. N Engl J Med. 2018;378:2433–8.

    PubMed  Article  Google Scholar 

  127. 127.

    Whittier WL, Korbet SM. Timing of complications in percutaneous kidney biopsy. J Am Soc Nephrol. 2004;15:142–7.

    PubMed  Article  Google Scholar 

  128. 128.

    Lin WC, Yang Y, Wen YK, Chang CC. Outpatient versus inpatient kidney biopsy: a retrospective study. Clin Nephrol. 2006;66:17–24.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  129. 129.

    Bairy M, Beleed K, Webb AT, Bhandari S. Safety of outpatient kidney biopsy: one center’s experience with 178 native kidney biopsies. Am J Kidney Dis. 2008;52:631–2.

    PubMed  Article  PubMed Central  Google Scholar 

  130. 130.

    Roccatello D, Sciascia S, Rossi D, Naretto C, Bazzan M, Solfietti L, Baldovino S, Menegatti E. Outpatient percutaneous native kidney biopsy: safety profile in a large monocentric cohort. BMJ Open. 2017;7:e015243.

    PubMed  PubMed Central  Article  Google Scholar 

  131. 131.

    Šimunov B, Gunjača M, Čingel B, Škegro D, Knotek M. Safety of outpatient kidney biopsies. Nephron. 2018;138:275–9.

    PubMed  Article  Google Scholar 

  132. 132.

    Kajawo S, Moloi MW, Noubiap JJ, Ekrikpo U, Kengne AP, Okpechi IG. Incidence of major complications after percutaneous native renal biopsies in adults from low-income to middle-income countries: a protocol for systematic review and meta-analysis. BMJ Open. 2018;8(4):e020891.

    PubMed  PubMed Central  Article  Google Scholar 

  133. 133.

    Iversen P, Brun C. Aspiration biopsy of the kidney, 1951. J Am Soc Nephrol. 1997;8(11):1778–87 (discussion 1778-86).

    CAS  PubMed  Google Scholar 

  134. 134.

    Schorr M, Roshanov PS, Weir MA, House AA. Frequency, timing, and prediction of major bleeding complications from percutaneous kidney biopsy. Can J Kidney Health Dis. 2020;25(7):2054358120923527.

    Google Scholar 

  135. 135.

    Korbet SM. Nephrology and the percutaneous kidney biopsy: a procedure in jeopardy of being lost along the way. Clin J Am Soc Nephrol. 2012;7:1545–7.

    PubMed  Article  PubMed Central  Google Scholar 

  136. 136.

    Kark RM, Muehrcke RC. Biopsy of kidney in prone position. Lancet. 1954;266:1047–9.

    CAS  PubMed  Article  Google Scholar 

  137. 137.

    Kark RM, Muehrcke RC, Pollak VE, Kiefer JH. An analysis of five hundred percutaneous renal biopsies. AMA Arch Intern Med. 1958;101:439–51.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  138. 138.

    Madaio MP. kidney biopsy. Kidney Int. 1990;38:529–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  139. 139.

    Donovan KL, Thomas DM, Wheeler DC, Macdougall IC, Williams JD. Experience with a new method for percutaneous kidney biopsy. Nephrol Dial Transplant. 1991;6:731–3.

    CAS  PubMed  Article  Google Scholar 

  140. 140.

    Bataille S, Jourde N, Daniel L, Mondain JR, Faure M, Gobert P, Alcheikh-Hassan Z, Lankester M, Giaime P, Gaudart J, Dussol B, Berland Y, Burtey S. Comparative safety and efficiency of five percutaneous kidney biopsy approaches of native kidneys: a multicenter study. Am J Nephrol. 2012;35:387–93.

    PubMed  Article  Google Scholar 

  141. 141.

    Tuladhar AS, Shrestha A, Pradhan S, Manandhar DN, Chhetri Poudyal PK, Rijal A, Poudel P, Maskey A, Bhoomi KK. USG assisted and USG guided percutaneous kidney biopsy at Nepal Medical College Teaching Hospital: a three and half years study. Nepal Med Coll J. 2014;16:26–9.

    CAS  PubMed  Google Scholar 

  142. 142.

    Rao NS, Chandra A. Needle guides enhance tissue adequacy and safety of ultrasound-guided renal biopsies. Kidney Res Clin Pract. 2018;37:41–8.

    PubMed  PubMed Central  Article  Google Scholar 

  143. 143.

    Shamshirgar F, Bagheri SM. Percutaneous ultrasound-guided kidney biopsy; a comparison of axial vs. sagittal probe location. Rom J Intern Med. 2017;55:96–102.

    PubMed  Google Scholar 

  144. 144.

    Bandari J, Fuller TW, Turner Ii RM, D’Agostino LA. Kidney biopsy for medical renal disease: indications and contraindications. Can J Urol. 2016b;23(1):8121–6.

    PubMed  Google Scholar 

  145. 145.

    Stec AA, Stratton KL, Kaufman MR, Chang SS, Milam DF, Herrell SD, Dmochowski RR, Smith JA Jr, Clark PE, Cookson MS. Open Kidney biopsy: comorbidities and complications in a contemporary series. BJU Int. 2010;106(1):102–6.

    PubMed  Article  Google Scholar 

  146. 146.

    Shetye KR, Kavoussi LR, Ramakumar S, Fugita OE, Jarrett TW. Laparoscopic Kidney biopsy: a 9-year experience. BJU Int. 2003;91(9):817–20.

    CAS  PubMed  Article  Google Scholar 

  147. 147.

    Furness PN, Philpott CM, Chorbadjian MT, Nicholson ML, Bosmans JL, Corthouts BL, Bogers JJ, Schwarz A, Gwinner W, Haller H, Mengel M, Seron D, Moreso F, Cañas C. Protocol biopsy of the stable renal transplant: a multicenter study of methods and complication. Transplantation. 2003;76:969–73.

    PubMed  Article  Google Scholar 

  148. 148.

    Schwarz A, Gwinner W, Hiss M, Radermacher J, Mengel M, Haller H. Safety and adequacy of renal transplant protocol biopsies. Am J Transplant. 2005;5:1992–6.

    PubMed  Article  Google Scholar 

  149. 149.

    Danovitch GM, editor. Handbook of kidney transplantation. 5th ed. Philadelphia: Lippincott Williams & Wilkins; 2010.

    Google Scholar 

  150. 150.

    Korbet SM. Percutaneous Kidney biopsy. Semin Nephrol. 2002;22:254–67.

    PubMed  Article  Google Scholar 

  151. 151.

    Burstein DM, Schwartz MM, Korbet SM. Percutaneous Kidney biopsy with the use of real-time ultrasound. Am J Nephrol. 1991;11:195–200.

    CAS  PubMed  Article  Google Scholar 

  152. 152.

    Marwah DS, Korbet SM. Timing of complications in percutaneous Kidney biopsy: what is the optimal period of observation? Am J Kidney Dis. 1996;28:47–52.

    CAS  PubMed  Article  Google Scholar 

  153. 153.

    Mendelssohn DC, Cole EH. Outcomes of percutaneous kidney biopsy, including those of solitary native kidneys. Am J Kidney Dis. 1995;26:580–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  154. 154.

    Kim D, Kim H, Shin G, Ku S, Ma K, Shin S, Gi H, Lee E, Yim H. A randomized, prospective, comparative study of manual and automated renal biopsies. Am J Kidney Dis. 1998;32:426–31.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  155. 155.

    Nass K, O’Neill WC. Bedside Kidney biopsy: ultrasound guidance by the nephrologist. Am J Kidney Dis. 1999;34:955–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  156. 156.

    Eiro M, Katoh T, Watanabe T. Risk factors for bleeding complications in percutaneous Kidney biopsy. Clin Exp Nephrol. 2005;9:40–5.

    PubMed  Article  PubMed Central  Google Scholar 

  157. 157.

    Manno C, Strippoli GF, Arnesano L, Bonifati C, Campobasso N, Gesualdo L, Schena FP. Predictors of bleeding complications in percutaneous ultrasound-guided Kidney biopsy. Kidney Int. 2004;66:1570–7.

    PubMed  Article  PubMed Central  Google Scholar 

  158. 158.

    Fraser IR, Fairley KF. Kidney biopsy as an outpatient procedure. Am J Kidney Dis. 1995;25:876–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  159. 159.

    Jones B, Puvaneswary M, Nanra R, Trevillian P, Carney S, Gillies A. Reduced duration of bed rest after percutaneous Kidney biopsy. Clin Nephrol. 1991;35:44–5.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. 160.

    Simckes AM, Blowey DL, Gyves KM, Alon US. Success and safety of same-day kidney biopsy in children and adolescents. Pediatr Nephrol. 2000;14:946–52.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  161. 161.

    Takeuchi Y, Ojima Y, Kagaya S, Aoki S, Nagasawa T. Manual compression and reflex syncope in native Kidney biopsy. Clin Exp Nephrol. 2018;22:1100–7.

    PubMed  PubMed Central  Article  Google Scholar 

  162. 162.

    Ishikawa E, Nomura S, Obe T, Katayama K, Oosugi K, Murata T, Tanoue A, Fujimoto M, Matsuo H, Ito M. How long is strict bed rest necessary after Kidney biopsy? Clin Exp Nephrol. 2009;13:594–7.

    PubMed  Article  PubMed Central  Google Scholar 

  163. 163.

    Manno C, Bonifati C, Torres DD, Campobasso N, Schena FP. Desmopressin acetate in percutaneous ultrasound-guided kidney biopsy: a randomized controlled trial. Am J Kidney Dis. 2011;57:850–5.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  164. 164.

    Khajehdehi P, Junaid SM, Salinas-Madrigal L, Schmitz PG, Bastani B. Percutaneous Kidney biopsy in the 1990s: safety, value, and implications for early hospital discharge. Am J Kidney Dis. 1999;34:92–7.

    CAS  PubMed  Article  Google Scholar 

  165. 165.

    Rasmussen LR, Loft M, Nielsen TK, Bjødstrup Jensen M, Høyer S, Hørlyck A, Graumann O. Short-term complications for percutaneous ultrasound-guided biopsy of renal masses in adult outpatients. Acta Radiol. 2018;59(4):491–6.

    PubMed  Article  Google Scholar 

  166. 166.

    Renal Physicians Association. RPA position on optimal length of observation after percutaneous Kidney biopsy. Clin Nephrol. 2001;56:179–80.

    Google Scholar 

  167. 167.

    Waldo BD, Grabau ZJ, Mengistu TM, Crow WT. The value of post-biopsy ultrasound in predicting complications after percutaneous Kidney biopsy of native kidneys. Nephrol Dial Transplant. 2009;24:2433–9.

    PubMed  Article  Google Scholar 

  168. 168.

    Ishikawa E, Nomura S, Hamaguchi T, Obe T, Inoue-Kiyohara M, Oosugi K, Katayama K, Ito M. Ultrasonography as a predictor of overt bleeding after Kidney biopsy. Clin Exp Nephrol. 2009;13:325–31.

    PubMed  Article  Google Scholar 

  169. 169.

    Brachemi S, Bollée G. Kidney biopsy practice: what is the gold standard? World J Nephrol. 2014;3:287–94.

    PubMed  PubMed Central  Article  Google Scholar 

  170. 170.

    Franke M, Kramarczyk A, Taylan C, Maintz D, Hoppe B, Koerber F. Ultrasound-guided percutaneous Kidney biopsy in 295 children and adolescents: role of ultrasound and analysis of complications. PLoS ONE. 2014;9(12):e114737.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  171. 171.

    Xu DM, Chen M, Zhou FD, Zhao MH. Risk factors for severe bleeding complications in percutaneous Kidney biopsy. Am J Med Sci. 2017;353(3):230–5.

    PubMed  Article  Google Scholar 

  172. 172.

    Yamamoto H, Hashimoto H, Nakamura M, Horiguchi H, Yasunaga H. Relationship between hospital volume and hemorrhagic complication after percutaneous Kidney biopsy: results from the Japanese diagnosis procedure combination database. Clin Exp Nephrol. 2015;19:271–7.

    PubMed  Article  Google Scholar 

  173. 173.

    Tanaka K, Kitagawa M, Onishi A, Yamanari T, Ogawa-Akiyama A, Mise K, Inoue T, Morinaga H, Uchida HA, Sugiyama H, Wada J. Arterial stiffness is an independent risk factor for anemia after percutaneous native kidney biopsy. Kidney Blood Press Res. 2017;42:284–93.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  174. 174.

    Chikamatsu Y, Matsuda K, Takeuchi Y, Kagaya S, Ojima Y, Fukami H, Sato H, Saito A, Iwakura Y, Nagasawa T. Quantification of bleeding volume using computed tomography and clinical complications after percutaneous Kidney biopsy. Clin Kidney J. 2017;10:9–15.

    PubMed  PubMed Central  Article  Google Scholar 

  175. 175.

    Mejía-Vilet JM, Márquez-Martínez MA, Cordova-Sanchez BM, Ibargüengoitia MC, Correa-Rotter R, Morales-Buenrostro LE. Simple risk score for prediction of hemorrhagic complications after a percutaneous Kidney biopsy. Nephrology (Carlton). 2018b;23:523–9.

    Article  CAS  Google Scholar 

  176. 176.

    Palsson R, Short SAP, Kibbelaar ZA, Amodu A, Stillman IE, Rennke HG, McMahon GM, Waikar SS. Bleeding complications after percutaneous native kidney biopsy: results from the Boston kidney biopsy cohort. Kidney Int Rep. 2020;5(4):511–8.

    PubMed  PubMed Central  Article  Google Scholar 

  177. 177.

    Chen TK, Estrella MM, Fine DM. Predictors of kidney biopsy complication among patients with systemic lupus erythematosus. Lupus. 2012;21:848–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  178. 178.

    Fish R, Pinney J, Jain P, Addison C, Jones C, Jayawardene S, Booth J, Howie AJ, Ghonemy T, Rajabali S, Roberts D, White L, Khan S, Morgan M, Cockwell P, Hutchison CA. The incidence of major hemorrhagic complications after renal biopsies in patients with monoclonal gammopathies. Clin J Am Soc Nephrol. 2010;5:1977–80.

    PubMed  PubMed Central  Article  Google Scholar 

  179. 179.

    Altindal M, Yildirim T, Turkmen E, Unal M, Boga I, Yilmaz R, Arici M, Altun B, Erdem Y. Safety of percutaneous ultrasound-guided kidney biopsy in patients with AA amyloidosis. Nephron. 2015;131:17–22.

    CAS  PubMed  Article  Google Scholar 

  180. 180.

    Ali H, Murtaza A, Anderton J, Ahmed A. Post Kidney biopsy complication rate and diagnostic yield comparing hands free (ultrasound-assisted) and ultrasound-guided biopsy techniques of renal allografts and native kidneys. Springerplus. 2015;4:491.

    PubMed  PubMed Central  Article  Google Scholar 

  181. 181.

    Mai J, Yong J, Dixson H, Makris A, Aravindan A, Suranyi MG, Wong J. Is bigger better? A retrospective analysis of native renal biopsies with 16 Gauge versus 18 Gauge automatic needles. Nephrology (Carlton). 2013;18:525–30.

    Article  Google Scholar 

  182. 182.

    Antunes PRB, Prado FFM, de Souza FTA, de Siqueira EC, de Campos MÁ, Álvares MCB, Neto RB. Clinical complications in Kidney biopsy using two different needle gauges: the impact of large hematomas, a random clinical trial study. Int J Urol. 2018;25:544–8.

    PubMed  Article  PubMed Central  Google Scholar 

  183. 183.

    Prasad N, Kumar S, Manjunath R, Bhadauria D, Kaul A, Sharma RK, Gupta A, Lal H, Jain M, Agrawal V. Real-time ultrasound-guided percutaneous Kidney biopsy with needle guide by nephrologists decreases post-biopsy complications. Clin Kidney J. 2015;8:151–6.

    PubMed  PubMed Central  Article  Google Scholar 

  184. 184.

    Torres Muñoz A, Valdez-Ortiz R, González-Parra C, Espinoza-Dávila E, Morales-Buenrostro LE, Correa-Rotter R. Percutaneous Kidney biopsy of native kidneys: efficiency, safety and risk factors associated with major complications. Arch Med Sci. 2011;7:823–31.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  185. 185.

    Lubas A, Wojtecka A, Smoszna J, Koziński P, Frankowska E, Niemczyk S. Hemodynamic characteristics and the occurrence of Kidney biopsy-related arteriovenous fistulas in native kidneys. Int Urol Nephrol. 2016;48:1667–73.

    PubMed  PubMed Central  Article  Google Scholar 

  186. 186.

    Meng CH, Elkin M. Immediate angiographic manifestations of iatrogenic renal injury due to percutaneous needle biopsy. Radiology. 1971;100:335–41.

    CAS  PubMed  Article  Google Scholar 

  187. 187.

    Stiles KP, Yuan CM, Chung EM, Lyon RD, Lane JD, Abbott KC. Kidney biopsy in high-risk patients with medical diseases of the kidney. Am J Kidney Dis. 2000;36:419–33.

    CAS  PubMed  Article  Google Scholar 

  188. 188.

    Gülcü A, Göktay Y, Soylu A, Türkmen M, Kavukçu S, Seçil M, Karabay N. Doppler US evaluation of Kidney biopsy complications in children. Diagn Interv Radiol. 2013;19:15–9.

    PubMed  Google Scholar 

  189. 189.

    Buczek M, Popiela TJ, Urbanik A. Pseudoaneurysma as iatrogenic complication of Kidney biopsy: management by transcatheter embolization. Przegl Lek. 2012;69:357–9.

    PubMed  Google Scholar 

  190. 190.

    Ito T, Ishikawa E, Ito M. Lumbar artery injury following Kidney biopsy. Clin Exp Nephrol. 2016;20:145–6.

    PubMed  Article  Google Scholar 

  191. 191.

    Krejčí K, Černá M, Žamboch K, Orság J, Klíčová A, Zadražil J. Late rupture of lumbar artery as an unusual complication after Kidney biopsy: case report. Urol Int. 2017;98:112–4.

    PubMed  Article  Google Scholar 

  192. 192.

    Ono A, Inoue T, Tomori K, Okada H. Page kidney following Kidney biopsy. Intern Med. 2017;56:875.

    PubMed  PubMed Central  Article  Google Scholar 

  193. 193.

    Ham YR, Moon KR, Bae HJ, Ju HJ, Jang WI, Choi DE, Na KR, Lee KW, Shin YT. A case of urine leakage: an unusual complication after Kidney biopsy. Chonnam Med J. 2011;47:181–4.

    PubMed  PubMed Central  Article  Google Scholar 

  194. 194.

    Whittier WL, Sayeed K, Korbet SM. Clinical factors influencing the decision to transfuse after percutaneous native kidney biopsy. Clin Kidney J. 2016;9:102–7.

    CAS  PubMed  Article  Google Scholar 

  195. 195.

    Alotaibi M, Shrouder-Henry J, Amaral J, Parra D, Temple M, John P, Connolly B. The positive color Doppler sign post biopsy: effectiveness of US-directed compression in achieving hemostasis. Pediatr Radiol. 2011;41:362–8.

    PubMed  Article  Google Scholar 

  196. 196.

    Hu T, Liu Q, Xu Q, Liu H, Feng Y, Qiu W, Huang F, Lv Y. Absorption fever characteristics due to percutaneous Kidney biopsy-related hematoma. Medicine. 2016;95:e4754.

    PubMed  PubMed Central  Article  Google Scholar 

  197. 197.

    Shima N, Hayami N, Mizuno H, Kawada M, Sekine A, Sumida K, Hiramatsu R, Yamanouchi M, Hasegawa E, Suwabe T, Hoshino J, Sawa N, Takaichi K, Ohashi K, Fujii T, Minota S, Ubara Y. Arteriovenous fistula-related renal bleeding 5 days after percutaneous Kidney biopsy. CEN Case Rep. 2019;8(4):280–4.

    PubMed  PubMed Central  Article  Google Scholar 

  198. 198.

    Solez K, Axelsen RA, Benediktsson H, Burdick JF, Cohen AH, Colvin RB, Croker BP, Droz D, Dunnill MS, Halloran PF, et al. International standardization of criteria for the histologic diagnosis of renal allograft rejection: the Banff working classification of kidney transplant pathology. Kidney Int. 1993;44:411–22.

    CAS  PubMed  Article  Google Scholar 

  199. 199.

    Corwin HL, Schwartz MM, Lewis EJ. The importance of sample size in the interpretation of the Kidney biopsy. Am J Nephrol. 1988;8:85–9.

    CAS  PubMed  Article  Google Scholar 

  200. 200.

    Wang HJ, Kjellstrand CM, Cockfield SM, Solez K. On the influence of sample size on the prognostic accuracy and reproducibility of renal transplant biopsy. Nephrol Dial Transplant. 1998;13:165–72.

    CAS  PubMed  Article  Google Scholar 

  201. 201.

    Luciano RL, Moeckel GW. Update on the native kidney biopsy: core curriculum 2019. Am J Kidney Dis. 2019;73:404–15.

    PubMed  Article  PubMed Central  Google Scholar 

  202. 202.

    Nasr SH, Galgano SJ, Markowitz GS, Stokes MB, D’Agati VD. Immunofluorescence on pronase-digested paraffin sections: a valuable salvage technique for renal biopsies. Kidney Int. 2006;70:2148–51.

    CAS  PubMed  Article  Google Scholar 

  203. 203.

    Deshpande V, Zen Y, Chan JK, Yi EE, Sato Y, Yoshino T, Klöppel G, Heathcote JG, Khosroshahi A, Ferry JA, Aalberse RC, Bloch DB, Brugge WR, Bateman AC, Carruthers MN, Chari ST, Cheuk W, Cornell LD, Fernandez-Del Castillo C, Forcione DG, Hamilos DL, Kamisawa T, Kasashima S, Kawa S, Kawano M, Lauwers GY, Masaki Y, Nakanuma Y, Notohara K, Okazaki K, Ryu JK, Saeki T, Sahani DV, Smyrk TC, Stone JR, Takahira M, Webster GJ, Yamamoto M, Zamboni G, Umehara H, Stone JH. Consensus statement on the pathology of IgG4-related disease. Mod Pathol. 2012;25:1181–92.

    PubMed  Article  PubMed Central  Google Scholar 

  204. 204.

    Vernier RL, Farquhar MG, Brunson JG, Good RA. Chronic renal disease in children; correlation of clinical findings with morphologic characteristics seen by light and electron microscopy. AMA J Dis Child. 1958;96:306–43.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  205. 205.

    Vehaskari VM, Rapola J, Koskimies O, Savilahti E, Vilska J, Hallman N. Microscopic hematuria in school children: epidemiology and clinicopathologic evaluation. J Pediatr. 1979;95:676–84.

    CAS  PubMed  Article  Google Scholar 

  206. 206.

    Takei S, Maeno N, Shigemori M, Imanaka H, Mori H, Nerome Y, Kanekura S, Takezaki T, Hokonohara M, Miyata K, Fujikawa S. Clinical features of Japanese children and adolescents with systemic lupus erythematosus: results of 1980–1994 survey. Acta Pediatr Jpn. 1997;39:250–6.

    CAS  Article  Google Scholar 

  207. 207.

    Wakiguchi H, Takei S, Kubota T, Miyazono A, Kawano Y. Treatable renal disease in children with silent lupus nephritis detected by baseline biopsy: association with serum C3 levels. Clin Rheumatol. 2017;36:433–7.

    PubMed  Article  Google Scholar 

  208. 208.

    Ito S, Ogura M, Kamei K, Matsuoka K, Warnock DG. Significant improvement in Fabry disease podocytopathy after 3 years of treatment with agalsidase beta. Pediatr Nephrol. 2016;31:1369–73.

    PubMed  Article  Google Scholar 

  209. 209.

    Najafian B, Mauer M, Hopkin RJ, Svarstad E. Renal complications of Fabry disease in children. Pediatr Nephrol. 2013;28:679–87.

    PubMed  Article  Google Scholar 

  210. 210.

    Emma F, Bertini E, Salviati L, Montini G. Renal involvement in mitochondrial cytopathies. Pediatr Nephrol. 2012;27:539–50.

    PubMed  Article  PubMed Central  Google Scholar 

  211. 211.

    Nozu K, Nakanishi K, Abe Y, Udagawa T, Okada S, Okamoto T, Kaito H, Kanemoto K, Kobayashi A, Tanaka E, Tanaka K, Hama T, Fujimaru R, Miwa S, Yamamura T, Yamamura N, Horinouchi T, Minamikawa S, Nagata M, Iijima K. A review of clinical characteristics and genetic backgrounds in Alport syndrome. Clin Exp Nephrol. 2019;23(2):158–68.

    PubMed  Article  PubMed Central  Google Scholar 

  212. 212.

    Kamiyoshi N, Nozu K, Fu XJ, Morisada N, Nozu Y, Ye MJ, Imafuku A, Miura K, Yamamura T, Minamikawa S, Shono A, Ninchoji T, Morioka I, Nakanishi K, Yoshikawa N, Kaito H, Iijima K. Genetic, clinical, and pathologic backgrounds of patients with autosomal dominant Alport syndrome. Clin J Am Soc Nephrol. 2016;11(8):1441–9.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  213. 213.

    Horinouchi T, Nozu K, Yamamura T, Minamikawa S, Omori T, Nakanishi K, Fujimura J, Ashida A, Kitamura M, Kawano M, Shimabukuro W, Kitabayashi C, Imafuku A, Tamagaki K, Kamei K, Okamoto K, Fujinaga S, Oka M, Igarashi T, Miyazono A, Sawanobori E, Fujimaru R, Nakanishi K, Shima Y, Matsuo M, Ye MJ, Nozu Y, Morisada N, Kaito H, Iijima K. Detection of splicing abnormalities and genotype-phenotype correlation in X-linked Alport syndrome. J Am Soc Nephrol. 2018;29(8):2244–54.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  214. 214.

    Greenbaum LA, Simckes AM, McKenney D, Kainer G, Nagaraj SK, Trachtman H, Alon US. Pediatric biopsy of a single native kidney. Pediatr Nephrol. 2000;15:66–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  215. 215.

    Kang S, Yoon HS, Lee EH. Should healthy children who will undergo minor surgery be screened for coagulation disorder? Pediatr Hematol Oncol. 2016;33:233–8.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  216. 216.

    Guay J, Faraoni D, Bonhomme F, Borel Derlon A, Lasne D. Ability of hemostatic assessment to detect bleeding disorders and to predict abnormal surgical blood loss in children: a systematic review and meta-analysis. Paediatr Anaesth. 2015;25:1216–26.

    PubMed  Article  PubMed Central  Google Scholar 

  217. 217.

    Bhasin N, Parker RI. Diagnostic outcome of preoperative coagulation testing in children. Pediatr Hematol Oncol. 2014;31:458–66.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  218. 218.

    Samková A, Blatný J, Fiamoli V, Dulíček P, Pařízková E. Significance and causes of abnormal preoperative coagulation test results in children. Haemophilia. 2012;18:e297-301.

    PubMed  Article  PubMed Central  Google Scholar 

  219. 219.

    Estcourt LJ, Malouf R, Doree C, Trivella M, Hopewell S, Birchall J. Prophylactic platelet transfusions prior to surgery for people with a low platelet count. Cochrane Database Syst Rev. 2018;9:CD012779.

    PubMed  PubMed Central  Google Scholar 

  220. 220.

    Varnell CD Jr, Stone HK, Welge JA. Bleeding complications after pediatric kidney biopsy: a systematic review and meta-analysis. Clin J Am Soc Nephrol. 2019;14:57–65.

    PubMed  Article  PubMed Central  Google Scholar 

  221. 221.

    Zhu MS, Chen JZ, Xu AP. Factors that can minimize bleeding compli-cations after Kidney biopsy. Int Urol Nephrol. 2014;46:1969–75.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  222. 222.

    Rianthavorn P, Kerr SJ, Chiengthong K. Safety of paediatric percutaneous native kidney biopsy and factors predicting bleeding complications. Nephrology (Carlton). 2014;19:143–8.

    Article  Google Scholar 

  223. 223.

    Vidhun J, Masciandro J, Varich L, Salvatierra O Jr, Sarwal M. Safety and risk stratification of percutaneous biopsies of adult-sized renal allografts in infant and older pediatric recipients. Transplantation. 2003;76(3):552–7.

    PubMed  Article  PubMed Central  Google Scholar 

  224. 224.

    Kark RM. The development of percutaneous Kidney biopsy in man. Am J Kidney Dis. 1990;16:585–9.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  225. 225.

    Pokhrel A, Agrawal RK, Baral A, Rajbhandari A, Hada R. Percutaneous Kidney biopsy: comparison of blind and real-time ultrasound-guided technique. J Nepal Health Res Counc. 2018;16(1):66–72.

    PubMed  Article  PubMed Central  Google Scholar 

  226. 226.

    Lindgren PG. Ultrasonically guided punctures. A modified technique. Radiology. 1980;137:235–7.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  227. 227.

    Chunduri S, Whittier WL, Korbet SM. Adequacy and complication rates with 14- vs. 16-gauge automated needles in percutaneous Kidney biopsy of native kidneys. Semin Dial. 2015;28:E11-14.

    PubMed  Article  PubMed Central  Google Scholar 

  228. 228.

    Øvrehus MA, Oldereid TS, Dadfar A, Bjørneklett R, Aasarød KI, Fogo AB, Ix JH, Hallan SI. Clinical phenotypes and long-term prognosis in white patients with biopsy-verified hypertensive nephrosclerosis. Kidney Int Rep. 2019;5(3):339–47.

    PubMed  PubMed Central  Article  Google Scholar 

  229. 229.

    Sethi I, Brier M, Dwyer A. Predicting post Kidney biopsy complications. Semin Dial. 2013;26(5):633–5.

    PubMed  Article  PubMed Central  Google Scholar 

  230. 230.

    White RH, Poole C. Day care Kidney biopsy. Pediatr Nephrol. 1996;10:408–11.

    CAS  PubMed  Article  Google Scholar 

  231. 231.

    Davis ID, Oehlenschlager W, O’Riordan MA, Avner ED. Pediatric Kidney biopsy: should this procedure be performed in an outpatient setting? Pediatr Nephrol. 1998;12:96–100.

    CAS  PubMed  Article  Google Scholar 

  232. 232.

    Sinha MD, Lewis MA, Bradbury MG, Webb NJ. Percutaneous real-time ultrasound-guided Kidney biopsy by automated biopsy gun in children: safety and complications. J Nephrol. 2006;19(1):41–4.

    PubMed  Google Scholar 

  233. 233.

    Hussain F, Watson AR, Hayes J, Evans J. Standards for renal biopsies: comparison of inpatient and day care procedures. Pediatr Nephrol. 2003;18:53–6.

    PubMed  Article  Google Scholar 

  234. 234.

    Murphy MS. Sedation for invasive procedures in pediatrics. Arch Dis Child. 1997;77:281–4.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  235. 235.

    Reich DL, Silvay G. Ketamine: an update on the first twenty-five years of clinical experience. Can J Anaesth. 1989;36:186–97.

    CAS  PubMed  Article  Google Scholar 

  236. 236.

    Green SM, Johnson NE. Ketamine sedation for pediatric procedures: part 2, review and implications. Ann Emerg Med. 1990;19:1033–46.

    CAS  PubMed  Article  Google Scholar 

  237. 237.

    Mikhael MS, Wray S, Robb ND. Intravenous conscious sedation in children for outpatient dentistry. Br Dent J. 2007;203:323–31.

    CAS  PubMed  Article  Google Scholar 

  238. 238.

    Di Liddo L, D’Angelo A, Nguyen B, Bailey B, Amre D, Stanciu C. Etomidate versus midazolam for procedural sedation in pediatric outpatients: a randomized controlled trial. Ann Emerg Med. 2006;48:433–40.

    PubMed  Article  Google Scholar 

  239. 239.

    Cravero JP, Beach ML, Blike GT, Gallagher SM, Hertzog JH, Pediatric Sedation Research Consortium. The incidence and nature of adverse events during pediatric sedation/anesthesia with propofol for procedures outside the operating room: a report from the Pediatric Sedation Research Consortium. Anesth Analg. 2009;108:795–804.

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  240. 240.

    Kamat PP, McCracken CE, Gillespie SE, Fortenberry JD, Stockwell JA, Cravero JP, Hebbar KB. Pediatric critical care physician-administered procedural sedation using propofol: a report from the Pediatric Sedation Research Consortium Database. Pediatr Crit Care Med. 2015;16:11–20.

    PubMed  Article  Google Scholar 

  241. 241.

    Mallory MD, Baxter AL, Yanosky DJ, Cravero JP, Pediatric Sedation Research Consortium. Emergency physician-administered propofol sedation: a report on 25,433 sedations from the pediatric sedation research consortium. Ann Emerg Med. 2011;57:462–8 (e1).

    PubMed  Article  PubMed Central  Google Scholar 

  242. 242.

    Mourani CC, Antakly MC, Haddad-Zebouni S. Pediatric Kidney biopsy: ambulatory versus overnight hospitalization. J Med Liban. 2001;49(6):316–8.

    CAS  PubMed  PubMed Central  Google Scholar 

  243. 243.

    Hussain F, Mallik M, Marks SD, Watson AR, British Association of Paediatric Nephrology. Renal biopsies in children: current practice and audit of outcomes. Nephrol Dial Transplant. 2010;25:485–9.

    PubMed  Article  Google Scholar 

  244. 244.

    Gupta A, Campion-Smith J, Hayes W, Deal JE, Gilbert RD, Inward C, Judd BA, Krishnan RG, Marks SD, O’Brien C, Shenoy M, Sinha MD, Tse Y, Tyerman K, Mallik M, Hussain F, British Association for Paediatric Nephrology. Positive trends in paediatric Kidney biopsy service provision in the UK: a national survey and re-audit of paediatric Kidney biopsy practice. Pediatr Nephrol. 2016;31:613–21.

    PubMed  Article  Google Scholar 

  245. 245.

    Muthusami P, Sunder S, Gallibois C, Kitamura E, Parra D, Amaral J, John P, Noone D, Connolly B. Measuring hemoglobin prior to early discharge without routine surveillance ultrasound after percutaneous native Kidney biopsy in children. Pediatr Nephrol. 2017;32:1927–34.

    PubMed  Article  Google Scholar 

  246. 246.

    Gagnon MH, Lin MF, Lancia S, Salter A, Yano M. A color flow tract in ultrasound-guided random renal core biopsy predicts complications. J Ultrasound Med. 2020;39(7):1335–42.

    PubMed  Article  Google Scholar 

  247. 247.

    Ding JJ, Lin SH, Huang JL, Wu TW, Hsia SH, Lin JJ, Chou YC, Tseng MH. Risk factors for complications of percutaneous ultrasound-guided Kidney biopsy in children. Pediatr Nephrol. 2020;35(2):271–8.

    PubMed  Article  Google Scholar 

  248. 248.

    Isiyel E, Fidan K, Buyukkaragoz B, Akcaboy M, Kandur Y, Gonul II, Buyan N, Bakkaloglu S, Soylemezoglu O. Results of native and transplant kidney biopsies of children in a single center over a 15 years period. Ren Fail. 2017;39(1):702–6.

    PubMed  PubMed Central  Article  Google Scholar 

  249. 249.

    Hunsicker LG, Bennett LE. Design of trials of methods to reduce late renal allograft loss: the price of success. Kidney Int (Suppl). 1995;52:S120-123.

    CAS  Google Scholar 

  250. 250.

    Wilkinson A. Protocol transplant biopsies: are they really needed? Clin J Am Soc Nephrol. 2006;1(1):130–7.

    PubMed  Article  Google Scholar 

  251. 251.

    Birk PE, Blydt-Hansen TD, Dart AB, Kaita LM, Proulx C, Taylor G. Low incidence of adverse events in outpatient pediatric renal allograft biopsies. Pediatr Transplant. 2007;11(2):196–200.

    PubMed  Article  Google Scholar 

Download references

Acknowledgements

The study was supported by the Japanese Society of Nephrology. The authors would like to thank Naoki Kashihara (President of the Japanese Society of Nephrology), and the members of the Japanese Society of Nephrology.

Author information

Affiliations

Authors

Consortia

Corresponding author

Correspondence to Yoshifumi Ubara.

Ethics declarations

Conflict of interest

No authors have declared any competing interest about the contribution of this article. All the authors have declared no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

In 2020, Japanese Society of Nephrology established Committee of Practical Guide for Kidney Biopsy 2020, which published in (Jinseiken guidebook, 2020, vol. 2, page 1–180). This is the English version of that report.

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ubara, Y., Kawaguchi, T., Nagasawa, T. et al. Kidney biopsy guidebook 2020 in Japan. Clin Exp Nephrol (2021). https://doi.org/10.1007/s10157-020-01986-6

Download citation

Keywords

  • Kidney biopsy
  • Indication of kidney biopsy in adults
  • Indication of kidney biopsy in children
  • Percutaneous native kidney biopsy under the ultrasonic guidance
  • Open (surgical) kidney biopsy and laparoscopic kidney biopsy
  • Relative contraindication for percutaneous native kidney biopsy
  • Bleeding complications after kidney biopsy