Skip to main content

Advertisement

Log in

Butyrylcholinesterase level as an independent factor of erythropoiesis-stimulating agent resistance in patients on maintenance hemodialysis: a single-center cross-sectional study

  • Original article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

Erythropoiesis-stimulating agent (ESA) responsiveness is related to the nutritional status of patients on hemodialysis (HD). Serum butyrylcholinesterase (BChE), an alpha-glycoprotein, may decrease in case of malnutrition. We investigated whether BChE was independently related to ESA resistance in patients on HD.

Methods

The laboratory data and ESA resistance index (ERI), defined as ESA dosage per week divided by dry weight and hemoglobin, were investigated in 215 patients on HD between July and September 2017. Malnutrition was defined as Geriatric Nutritional Risk Index (GNRI) of < 91.2. The patients were stratified into two groups: ERI-high (ERI ≥ 9.44) and ERI-low (ERI < 9.44) groups. Variables such as patient’s background, medication, and laboratory data were compared between the two groups. The optimal cutoff value of BChE for higher ERI was determined using receiver operating characteristic analysis. Factors independently associated with higher ERI were determined using multivariate logistic regression analysis.

Results

The median and optimal cutoff values of ERI and BChE were 6.51 and 200 IU/L, respectively. The study included 71 (33%) and 144 (67%) patients in the ERI-high and ERI-low groups, respectively. Significant between-group differences were observed concerning age, hemoglobin, ESA dose, lipid profiles, serum albumin, body mass index, GNRI, iron metabolism markers, ferric medicines, and BChE. Multivariate analysis showed that BChE < 200 IU/L (odds ratio 3.67; 95% confidence interval 1.73–7.77) continued to be an independent factor associated with higher ERI after adjusting for potential confounders, which was a similar odds ratio as GNRI < 91.2.

Conclusion

BChE may be an independent indicator of ESA resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Akizawa T, Pisoni RL, Akiba T, Saito A, Fukuhara S, Asano Y, et al. Japanese haemodialysis anaemia management practices and outcomes (1999‒2006); results from the DOPPS. Nephrol Dial Transpl. 2008;23:3643‒3653.

    Article  Google Scholar 

  2. Mix TC, Brenner RM, Cooper ME, de Zeeuw D, Ivanovich P, Levey AS, et al. Trial to Reduce Cardiovascular Events with Aranesp Therapy (TREAT): evolving the management of cardiovascular risk in patients with chronic kidney disease. Am Heart J. 2005;149:408–13.

    Article  CAS  PubMed  Google Scholar 

  3. Rattanasompattikul M, Molnar MZ, Zaritsky JJ, Hatamizadeh P, Jing J, Norris KC, et al. Association of malnutrition-inflammation complex and responsiveness to erythropoiesis-stimulating agents in long-term hemodialysis patients. Nephrol Dial Transpl. 2013;28:1936–45.

    Article  CAS  Google Scholar 

  4. Davis L, Britten JJ, Morgan M. Cholinesterase Its significance in anaesthetic practice. Anaesthesia. 1997;52:244–60.

    Article  CAS  PubMed  Google Scholar 

  5. Ogunkeye OO, Roluga AI. Serum cholinesterase activity helps to distinguish between liver disease and non-liver disease aberration in liver function tests. Pathophysiology. 2006;13:91–3.

    Article  CAS  PubMed  Google Scholar 

  6. Lampón N, Hermida-Cadahia EF, Riveiro A, Tutor JC. Association between butyrylcholinesterase activity and low-grade systemic inflammation. Ann Hepatol. 2012;11:356–63.

    PubMed  Google Scholar 

  7. Hubbard RE, O’Mahony MS, Calver BL, Woodhouse KW. Plasma esterases and inflammation in ageing and frailty. Eur J Clin Pharmacol. 2008;64:895–900.

    Article  CAS  PubMed  Google Scholar 

  8. Gu SZ, Zhao XH, Quan P, Li SB, Pan BR. Alterations of serum cholinesterase in patients with gastric cancer. World J Gastrenterol. 2005;11:4604–6.

    Article  CAS  Google Scholar 

  9. Cucuianu M, Nistor T, Hâncu N, Orbai P, Muscurel C, Stoian I. Serum cholinesterase activity correlates with serum insulin, C-peptide and free fatty acids levels in patients with type 2 diabetes. Rom J Intern Med. 2002;40:43–51.

    CAS  PubMed  Google Scholar 

  10. Paes AM, Carniatto SR, Francisco FA, Brito NA, Mathias PC. Acetylcholinesterase activity changes on visceral organs of VMH lesion-induced obese rats. Int J Neurosci. 2006;116:1295–302.

    Article  CAS  PubMed  Google Scholar 

  11. Nomura F, Ohnishi K, Koen H, Hiyama Y, Nakayama T, Itoh Y,et al. Serum cholinesterase in patients with fatty liver. J Clin Gastroenterol. 1986;8:599–602.

    Article  CAS  PubMed  Google Scholar 

  12. Calderon-Margalit R, Adler B, Abramson JH, Gofin J, Kark JD. Butyrylcholinesterase activity, cardiovascular risk factors, and mortality in middle-aged and elderly men and women in Jerusalem. Clin Chem. 2006;52:845–52.

    Article  CAS  PubMed  Google Scholar 

  13. Montgomery RD. The relation of oedema to serum protein and pseudocholinesterase levels in the malnourished infant. Arch Dis Child. 1963;38:343.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Koie T, Ohyama C, Mikami J, Iwamura H, Fujita N, Sato T, et al. Preoperative butyrylcholinesterase level as an independent predictor of overall survival in clear cell renal cell carcinoma patients treated with nephrectomy. Sci World J. 2014;2014:948305.

    Article  Google Scholar 

  15. Garcia SC, Wyse AT, Valentini J, Roehrs M, Moro AM, Paniz C, et al. Butyrylcholinesterase activity is reduced in haemodialysis patients: is there association with hyperhomocysteinemia and/or oxidative stress? Clin Biochem. 2008;41:474–9.

    Article  CAS  PubMed  Google Scholar 

  16. Cremieux PY, Van Audenrode M, Lefebvre P. The relative dosing of epoetin alfa and darbepoetin alfa in chronic kidney disease. Curr Med Res Opin. 2006;22:2329‒2336.

    Article  Google Scholar 

  17. Eriguchi R, Taniguchi M, Ninomiya T, Hirakata H, Fujimi S, Tsuruya K, et al. Hyporesponsiveness to erythropoiesis-stimulating agent as a prognostic factor in Japanese hemodialysis patients: the Q-Cohort study. J Nephrol. 2015;28:217–25.

    Article  CAS  PubMed  Google Scholar 

  18. Bouillanne O, Morineau G, Dupont C, Coulombel I, Vincent JP, Nicolis I, et al. Geriatric Nutritional Risk Index: a new index for evaluating at-risk elderly medical patients. Am J Clin Nutr. 2005;82:777–83.

    Article  CAS  PubMed  Google Scholar 

  19. Yamada K, Furuya R, Takita T, Maruyama Y, Yamaguchi Y, Ohkawa S, et al. Simplified nutritional screening tools for patients on maintenance hemodialysis. Am J Clin Nutr. 2008;87:106–13.

    Article  CAS  PubMed  Google Scholar 

  20. Youden WJ. Index for rating diagnostic tests. Cancer. 1950;3:32–5.

    Article  CAS  PubMed  Google Scholar 

  21. McFarlane PA, Pisoni RL, Eichleay MA, Wald R, Port FK. Mendelssohn. International trends in erythropoietin use and hemoglobin levels in hemodialysis patients. Kidney Int. 2010;78:215–23.

    Article  CAS  PubMed  Google Scholar 

  22. Kilpatrick RD, Critchlow CW, Fishbane S, Besarab A, Stehman-Breen C, Krishnan M, et al. Greater epoetin alfa responsiveness is associated with improved survival in hemodialysis patients. Clin J Am Soc Nephrol. 2008;3:1077–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Locatelli F, Andrulli S, Memoli B, Maffei C, Del Vecchio L, Aterini S,et al. Nutritional-inflammation status and resistance to erythropoietin therapy in haemodialysis patients. Nephrol Dial Transpl. 2006;21:991–8.

    Article  CAS  Google Scholar 

  24. Brancaccio D, Cozzolino M, Gallieni M. Hyperparathyroidism and anemia in uremic subjects: a combined therapeutic approach. J Am Soc Nephrol. 2004;15(Suppl 1):S21–4.

    Article  PubMed  Google Scholar 

  25. Mallick S, Rafiroiu A, Kanthety R, Iqbal S, Malik R, Rahman M. Factors predicting erythropoietin resistance among maintenance hemodialysis patients. Blood Purif. 2012;33:238–44.

    Article  CAS  PubMed  Google Scholar 

  26. Yeagle PL. Cholesterol and the cell membrane. Biochim Biophys Acta. 1985;822:267–87.

    Article  CAS  PubMed  Google Scholar 

  27. Panichi V, Cupisti A, Rosati A, Di Giorgio A, Scatena A, Menconi O, et al. Geriatric nutritional risk index is a strong predictor of mortality in hemodialysis patients: data from the Riscavid cohort. J Nephrol. 2014;27:193–201.

    Article  CAS  PubMed  Google Scholar 

  28. Santarpia L, Grandone I, Contaldo F, Pasanisi F. Butyrylcholinesterase as a prognostic marker: a review of the literature. J Cachexia Sarcopenia Muscle. 2013;4:31–9.

    Article  PubMed  Google Scholar 

  29. Sukkar SG, Gallo F, Borrini C, Vaccaro A, Marchello C, Boicelli R, et al. Effects of a new mixture of essential amino acids (Aminotrofic(®)) in malnourished haemodialysis patients. Med J Nutr Metab. 2012;5:259–66.

    Article  CAS  Google Scholar 

  30. Schiffl H, Lang SM, Stratakis D, Fischer R. Effects of ultrapure dialysis fluid on nutritional status and inflammatory parameters. Nephrol Dial Transpl. 2001;16:1863–9.

    Article  CAS  Google Scholar 

  31. Ostergaard D, Viby-Mogensen J, Hanel HK, Skovgaard LT. Half-life of plasma cholinesterase. Acta Anaesthesiol Scand. 1988;32:266–9.

    Article  CAS  PubMed  Google Scholar 

  32. Kaizu Y, Kimura M, Yoneyama T, Miyaji K, Hibi I, Kumagai H. Interleukin-6 may mediate malnutrition in chronic hemodialysis patients. Am J Kidney Dis. 1998;31:93–100.

    Article  CAS  PubMed  Google Scholar 

  33. Stojanov MD, Jovicić DM, Djurić SP, Konjević MM, Todorović ZM, Prostran MS. Butyrylcholinesterase activity and mortality risk in hemodialysis patients: comparison to hsCRP and albumin. Clin Biochem. 2009;42:22–6.

    Article  CAS  PubMed  Google Scholar 

  34. Azuma S, Higashiue S, Kawahira T, Matsubayashi K, Tonda H, Komooka M, et al. Long-term results following aortic valve replacement for aortic valve stenosis in patients with dialysis-dependent renal failure and risk factors for prognosis. Jpn J Vasc Surg. 2013;4:274–8 (Japanese).

    Google Scholar 

Download references

Acknowledgements

We thank Sakiko Fujita, Akiko Kimura, Mieko Kawamura, Chizu Kawase, Kumiko Sato, and Masahiko Tezuka for their invaluable help with data collection. We would like to appreciate Enago (http://www.enago.jp) for English language support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teppei Okamoto.

Ethics declarations

Conflict of interest

The authors have declared that no conflict of interest exists.

Human rights

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee at which the studies were conducted (IRB approval number 2017-089) and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Registration of clinical trials

The trial is registered in the UMIN Clinical Trials Registry UMIN000028064.

Informed consent

Informed consent was obtained from all individual participants included in the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okamoto, T., Hatakeyama, S., Tanaka, Y. et al. Butyrylcholinesterase level as an independent factor of erythropoiesis-stimulating agent resistance in patients on maintenance hemodialysis: a single-center cross-sectional study. Clin Exp Nephrol 22, 1174–1181 (2018). https://doi.org/10.1007/s10157-018-1569-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-018-1569-z

Keywords

Navigation