Advertisement

Clinical and Experimental Nephrology

, Volume 22, Issue 1, pp 3–14 | Cite as

Complement regulation and kidney diseases: recent knowledge of the double-edged roles of complement activation in nephrology

  • Masashi Mizuno
  • Yasuhiro Suzuki
  • Yasuhiko Ito
Review article

Abstract

The complement activation system plays important roles to maintain homeostasis in the host and to fight foreign invaders to protect the host. Therefore, the complement system is considered a core part of innate immunity which also cross-talks to acquired immunity. In the history of nephrology, the complement system is familiar to us, because complement protein or fragment deposition, including C3, C4, C1q, and/or C4d, is routinely estimated by immunohistochemistry to diagnose renal pathologies. The relationships between pathological mechanisms and complement activation have been investigated for renal diseases such as post-infectious glomerulonephritis, lupus nephritis, and primary membranoproliferative glomerulonephritis, which are usually accompanied by hypocomplementemia. However, unregulated complement activation in local areas might be associated with progression of various renal injuries even in the normocomplementemic patient. Recently, attention has focused on dysfunction of complement regulation in various diseases including renal diseases such as atypical hemolytic uremic syndrome and C3 glomerulopathy. Some mechanisms associated with complement activation in these diseases were clarified. In addition, lots of anti-complement agents were developed and some of the agents have become clinically available. Now, anti-complement therapies represent a realistic choice of therapeutic approaches for complement-related diseases. Research on roles of complement activation is proceeding into new stages in the field of nephrology and in other fields involving both basic and clinical research. We herein summarize relationships between the complement activation and regulation systems, their physiological effects and roles in maintenance of homeostasis in the host, and how dysregulation of the complement system triggers disease, especially renal disease.

Keywords

Complement Complement regulator Complement dysregulation 

Notes

Acknowledgements

The authors profoundly thank Prof B. Paul Morgan for editing this manuscript. This work was in part supported in part by the Ministry of Education, Culture, Sports, Science and Technology in Japan (Grants-in-Aid 24591227). Mizuno M, Suzuki Y and Ito Y worked in the Department of Renal Replacement Therapy as positions endowed by Baxter Japan at Nagoya University Graduate School of Medicine.

Conflict of interest

None.

References

  1. 1.
    Baalasubramanian S, Harris CL, Donev RM, Mizuno M, Omidvar N, Song W, et al. CD59a is the primary regulator of membrane attack complex assembly in the mouse. J Immunol. 2004;173:3684–92.PubMedCrossRefGoogle Scholar
  2. 2.
    Elward K, Griffiths M, Mizuno M, Harris CL, Neal JW, Morgan BP, et al. CD46 plays a key role in tailoring innate immune recognition of apoptotic and necrotic cells. J Biol Chem. 2005;280(43):36342–54.PubMedCrossRefGoogle Scholar
  3. 3.
    Cazander G, Jukema GN, Nibbering PH. Complement activation and inhibition in wound healing. Clin Dev Immunol. 2012;2012:534291.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Nonaka M, Kimura A. Genomic view of the evolution of the complement system. Immunogenetics. 2006;58:701–13.PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Petersen SV, Thiel S, Jensenius JC. The mannan-binding lectin pathway of complement activation: biology and disease association. Mol Immunol. 2001;38(2–3):133–49.PubMedCrossRefGoogle Scholar
  6. 6.
    Garred P, Genster N, Pilely K, Bayarri-Olmos R, Rosbjerg A, Ma YJ, et al. A journey through the lectin pathway of complement-MBL and beyond. Immunol Rev. 2016;274(1):74–97.PubMedCrossRefGoogle Scholar
  7. 7.
    Banda NK, Takahashi M, Takahashi K, Stahl GL, Hyatt S, Glogowska M, et al. Mechanisms of mannose-binding lectin-associated serine proteases-1/3 activation of the alternative pathway of complement. Mol Immunol. 2011;49(1–2):281–9.PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Banda NK, Acharya S, Scheinman RI, Mehta G, Coulombe M, Takahashi M, et al. Mannan-binding lectin-associated serine protease 1/3 cleavage of pro-factor D into factor D in vivo and attenuation of collagen antibody-induced arthritis through their targeted inhibition by RNA interference-mediated gene silencing. J Immunol. 2016;197(9):3680–94.PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Chen Y, Yang C, Jin N, Xie Z, Tang Y, Fei L, et al. Terminal complement complex C5b-9-treated human monocyte-derived dendritic cells undergo maturation and induce Th1 polarization. Eur J Immunol. 2007;37(1):167–76.PubMedCrossRefGoogle Scholar
  10. 10.
    David S, et al. Nephrol Dial Tranplant. 1997;12:51–6.CrossRefGoogle Scholar
  11. 11.
    Hila S, Soane L, Koski CL. Sublytic C5b-9-stimulated Schwann cell survival through PI 3-kinase-mediated phosphorylation of BAD. Glia. 2001;36(1):58–67.PubMedCrossRefGoogle Scholar
  12. 12.
    Serna M, Giles JL, Morgan BP, Bubeck D. Structural basis of complement membrane attack complex formation. Nat Commun. 2016;7:10587.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Mizuno M, Cole DS. Novel C5a regulators in inflammation. Expert Opin Invest Drugs. 2005;14:807–21.CrossRefGoogle Scholar
  14. 14.
    Bénard M, Gonzalez BJ, Schouft MT, et al. Characterization of C3a and C5a receptors in rat cerebellar granule neurons during maturation. Neuroprotective effect of C5a against apoptotic cell death. J Biol Chem. 2004;279:43478–96.CrossRefGoogle Scholar
  15. 15.
    Markiewski MM, DeAngelis RA, Strey CW, Foukas PG, Gerard C, Gerard N, et al. The regulation of liver cell survival by complement. J Immunol. 2009;182(9):5412–8.PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Ignatius A, Ehrnthaller C, Brenner RE, Kreja L, Schoengraf P, Lisson P, et al. The anaphylatoxin receptor C5aR is present during fracture healing in rats and mediates osteoblast migration in vitro. J Trauma. 2011;71(4):952–60.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Guo Q, Cheng J, Zhang J, Su B, Bian C, Lin S, et al. Delayed post-injury administration of C5a improves regeneration and functional recovery after spinal cord injury in mice. Clin Exp Immunol. 2013;174(2):318–25.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Hollmann TJ, Mueller-Ortiz SL, Braun MC, Wetsel RA. Disruption of the C5a receptor gene increases resistance to acute Gram-negative bacteremia and endotoxic shock: opposing roles of C3a and C5a. Mol Immunol. 2008;45(7):1907–15.PubMedCrossRefGoogle Scholar
  19. 19.
    Seya T, Nakamura K, Masaki T, Ichihara-Itoh C, Matsumoto M, Nagasawa S. Human factor H and C4b-binding protein serve as factor I-cofactors both encompassing inactivation of C3b and C4b. Mol Immunol. 1995;32(5):355–60.PubMedCrossRefGoogle Scholar
  20. 20.
    Servais A, Frémeaux-Bacchi V, Lequintrec M, Salomon R, Blouin J, Knebelmann B, et al. Primary glomerulonephritis with isolated C3 deposits: a new entity which shares common genetic risk factors with haemolytic uraemic syndrome. J Med Genet. 2007;44(3):193–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Pechtl IC, Kavanagh D, McIntosh N, Harris CL, Barlow PN. Disease-associated N-terminal complement factor H mutations perturb cofactor and decay-accelerating activities. J Biol Chem. 2011;286(13):11082–90.PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Kemper C, Pangburn MK, Fishelson Z. Complement nomenclature 2014. Mol Immunol. 2014;61(2):56–8.PubMedCrossRefGoogle Scholar
  23. 23.
    Cardone J, Le Friec G, Kemper C. CD46 in innate and adaptive immunity: an update. Clin Exp Immunol. 2011;164(3):301–11.PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Liszewski MK, Atkinson JP. Membrane cofactor protein. Curr Topics Microbiol Immunol. 1992;178:45–60.Google Scholar
  25. 25.
    Post TW, Liszewski MK, Adams EM, Tedja I, Miller EA, Atkinson JP. Membrane cofactor protein of the complement system: alternative splicing of serine/threonine/proline-rich exons and cytoplasmic tails produces multiple isoforms that correlate with protein phenotype. J Exp Med. 1991;174:93–102.PubMedCrossRefGoogle Scholar
  26. 26.
    Mizuno M, Harris CL, Johnson PM, Morgan BP. Rat membrane cofactor protein (MCP; CD46) is expressed only in the acrosome of developing and mature spermatozoa and mediates binding to immobilized activated C3. Biol Reprod. 2004;71(4):1374–83.PubMedCrossRefGoogle Scholar
  27. 27.
    Harris CL, Mizuno M, Morgan BP. Spermatogenic cells distal to blood-testis barrier in rats lack C3 convertase regulators and may be at risk of complement-mediated injury. J Reprod Immunol. 2006;69:23–34.PubMedCrossRefGoogle Scholar
  28. 28.
    Nicholson-Weller A, Wang CE. Structure and function of decay accelerating factor CD55. J Lab Clin Med. 1994;123(4):485–91.PubMedGoogle Scholar
  29. 29.
    Mizuno M, Donev RM, Harris CL, Morgan BP. CD55 expression in rat male reproductive tissue: differential expression in testis and expression of a unique truncated isoform on spermatozoa. Mol Immunol. 2007;44:1613–22.PubMedCrossRefGoogle Scholar
  30. 30.
    Kim YU, Kinoshita T, Molina H, Hourcade D, Seya T, Wagner LM, et al. Mouse complement regulatory protein Crry/p65 uses the specific mechanisms of both human decay-accelerating factor and membrane cofactor protein. J Exp Med. 1995;181(1):151–9.PubMedCrossRefGoogle Scholar
  31. 31.
    Merle NS, Church SE, Fremeaux-Bacchi V, Roumenina LT. Complement System Part I - Molecular Mechanisms of Activation and Regulation. Front Immunol. 2015;6:262.PubMedPubMedCentralGoogle Scholar
  32. 32.
    Hansen CB, Csuka D, Munthe-Fog L, Varga L, Farkas H, Hansen KM, et al. The levels of the lectin pathway serine protease MASP-1 and its complex formation with C1 inhibitor are linked to the severity of hereditary angioedema. J Immunol. 2015;195(8):3596–604.PubMedCrossRefGoogle Scholar
  33. 33.
    Nissen MH, Bregenholt S, Nording JA, Claesson MH. C1-esterase inhibitor blocks T lymphocyte proliferation and cytotoxic T lymphocyte generation in vitro. Int Immunol. 1998;10:167–73.PubMedCrossRefGoogle Scholar
  34. 34.
    McDonald JF, Nelsestuen GL. Potent inhibition of terminal complement assembly by clusterin: characterization of its impact on C9 polymerization. BioChemistry. 1997;36(24):7464–73.PubMedCrossRefGoogle Scholar
  35. 35.
    Bhakdi S, Käflein R, Halstensen TS, Hugo F, Preissner KT, Mollnes TE. Complement S-protein (vitronectin) is associated with cytolytic membrane-bound C5b-9 complexes. Clin Exp Immunol. 1988;74(3):459–64.PubMedPubMedCentralGoogle Scholar
  36. 36.
    Meri S, Morgan BP, Wing M, Jones J, Davies A, Podack E, et al. Human protectin (CD59), an 18-20-kD homologous complement restriction factor, does not restrict perforin-mediated lysis. J Exp Med. 1990;172(1):367–70.PubMedCrossRefGoogle Scholar
  37. 37.
    Meri S, Morgan BP, Davies A, Daniels RH, Olavesen MG, Waldmann H, et al. Human protectin (CD59), an 18,000–20,000 MW complement lysis restricting factor, inhibits C5b-8 catalysed insertion of C9 into lipid bilayers. Immunology. 1990;71(1):1–9.PubMedPubMedCentralGoogle Scholar
  38. 38.
    Harris CL, Hanna SM, Mizuno M, Holt DS, Marchbank KJ, Morgan BP. Characterization of the mouse analogues of CD59 using novel monoclonal antibodies: tissue distribution and functional comparison. Immunology. 2003;109:117–26.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.
    Seya T. CD46, a complement regulatory protein/measles virus receptor, and its relation to hematological disorders. Int J Hematol. 1991;64(2):101–9.Google Scholar
  40. 40.
    Gaggar A, Shayakhmetov DM, Liszewski MK, Atkinson JP, Lieber A. Localization of regions in CD46 that interact with adenovirus. J Virol. 2005;79:7503–13.PubMedPubMedCentralCrossRefGoogle Scholar
  41. 41.
    Marttila M, Persson D, Gustafsson D, et al. CD46 is a cellular receptor for all species B adenoviruses except types 3 and 7. J Virol. 2005;79:14429–36.PubMedPubMedCentralCrossRefGoogle Scholar
  42. 42.
    Pettigrew DM, Williams DT, Kerrigan D, Evans DJ, Lea SM, Bhella D. Structural and functional insights into the interaction of echoviruses and decay-accelerating factor. J Biol Chem. 2006;281:5169–77.PubMedCrossRefGoogle Scholar
  43. 43.
    Hafenstein S, Bowman VD, Chipman PR, et al. Interaction of decay-accelerating factor with coxsackievirus B3. J Virol. 2007;81:12927–35.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Krautkrämer E, Zeier M. Hantavirus causing hemorrhagic fever with renal syndrome enters from the apical surface and requires decay-accelerating factor (DAF/CD55). J Virol. 2008;82:4257–64.PubMedPubMedCentralCrossRefGoogle Scholar
  45. 45.
    Zhou J, To KK, Dong H, Cheng ZS, Lau CC, Poon VK, et al. A functional variation in CD55 increases the severity of 2009 pandemic H1N1 influenza A virus infection. J Infect Dis. 2012;206(4):495–503.PubMedCrossRefGoogle Scholar
  46. 46.
    Sobo K, Rubbia-Brandt L, Brown TD, Stuart AD, McKee TA. Decay-accelerating factor binding determines the entry route of echovirus 11 in polarized epithelial cells. J Virol. 2011;85(23):12376–86.PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Plevka P, Hafenstein S, Harris KG, Cifuente JO, Zhang Y, Bowman VD, et al. Interaction of decay-accelerating factor with echovirus 7. J Virol. 2010;84(24):12665–74.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Conde JN, da Silva EM, Allonso D, Coelho DR, Andrade ID, de Medeiros LN, et al. Inhibition of the membrane attack complex by dengue virus NS1 through Interaction with vitronectin and terminal complement proteins. J Virol. 2016;90(21):9570–81.PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Young KA, Chen XS, Holers VM, Hannan JP. Isolating the Epstein–Barr virus gp350/220 binding site on complement receptor type 2 (CR2/CD21). J Biol Chem. 2007;282(50):36614–25.PubMedCrossRefGoogle Scholar
  50. 50.
    Johnson JB, Grant K, Parks GD. The paramyxoviruses simian virus 5 and mumps virus recruit host cell CD46 to evade complement-mediated neutralization. J Virol. 2009;83(15):7602–11.PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Oliver MA, Rojo JM, Rodríguez de Córdoba S, Alberti S. Binding of complement regulatory proteins to group A Streptococcus. Vaccine. 2008;26(Suppl 8):175–8.Google Scholar
  52. 52.
    Hallström T, Singh B, Kraiczy P, Hammerschmidt S, Skerka C, Zipfel PF, et al. conserved patterns of microbial immune escape: pathogenic microbes of diverse origin target the human terminal complement inhibitor vitronectin via a single common motif. PLoS One. 2016;11(1):e0147709.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Díaz A, Ferreira A, Sim RB. Complement evasion by Echinococcus granulosus: sequestration of host factor H in the hydatid cyst wall. J Immunol. 1997;158(8):3779–86.PubMedGoogle Scholar
  54. 54.
    Poltermann S, Kuner A, von der Heide M, Eck R, Hartmann A, Zipfel PF. Gpm1p is a factor H-, FHL-1-, and plasminogen-binding surface protein of Candida albicans. J Biol Chem. 2007;282(52):37537–44.PubMedCrossRefGoogle Scholar
  55. 55.
    van Beek J, Elward K, Gasque P. Activation of complement in the central nervous system: roles in neurodegeneration and neuroprotection. Ann N Y Acad Sci. 2003;992:56–71.PubMedCrossRefGoogle Scholar
  56. 56.
    Bonifati DMK U. Role of complement in neurodegeneration and neuroinflammation. Mol Immunol. 2007;44(5):999–1010.CrossRefGoogle Scholar
  57. 57.
    Carroll MC. A protective role for innate immunity in systemic lupus erythematosus. Nat Rev Immunol. 2004;4(10):825–31.PubMedCrossRefGoogle Scholar
  58. 58.
    Hannan JP. The structure-function relationships of complement receptor type 2 (CR2; CD21). Curr Protein Pept Sci. 2016;17(5):463–87.PubMedCrossRefGoogle Scholar
  59. 59.
    Morgan BP, Gasque P. Extrahepatic complement biosynthesis: where, when and why? Clin Exp Immunol. 1997;107:1–7.PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Carroll MC, Isenman DE. Regulation of humoral immunity by complement. Immunity. 2012;37(2):199–207.PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Molnár E, Erdei A, Prechl J. Novel roles for murine complement receptors type 1 and 2 I. Regulation of B cell survival and proliferation by CR1/2. Immunol Lett. 2008;116:156–62.PubMedCrossRefGoogle Scholar
  62. 62.
    Shimizu I, Kawahara T, Haspot F, Bardwell PD, Carroll MC, Sykes M. B-cell extrinsic CR1/CR2 promotes natural antibody production and tolerance induction of anti-alphaGAL-producing B-1 cells. Blood. 2007;109:1773–81.PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Heesters BA, Chatterjee P, Kim YA, Gonzalez SF, Kuligowski MP, Kirchhausen T, et al. Endocytosis and recycling of immune complexes by follicular dendritic cells enhances B cell antigen binding and activation. Immunity. 2013;38(6):1164–75.PubMedPubMedCentralCrossRefGoogle Scholar
  64. 64.
    Marie JC, Astier AL, Rivailler P, Rabourdin-Combe C, Wild TF, Horvat B. Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol. 2002;3:659–66.PubMedCrossRefGoogle Scholar
  65. 65.
    Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP. Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature. 2003;421:388–92.PubMedCrossRefGoogle Scholar
  66. 66.
    Fu H, Liu B, Frost JL, Hong S, Jin M, Ostaszewski B, et al. Complement component C3 and complement receptor type 3 contribute to the phagocytosis and clearance of fibrillar Aβ by microglia. Glia. 2012;60(6):993–1003.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Huber-Lang M, Sarma JV, Zetoune FS, Rittirsch D, Neff TA, McGuire SR, et al. Generation of C5a in the absence of C3: a new complement activation pathway. Nat Med. 2006;12(6):682–7.PubMedCrossRefGoogle Scholar
  68. 68.
    Ikeda K, Nagasawa K, Horiuchi T, al. e. C5a induces tissue factpr activity on endothelial cells. Thromb Haemast. 1997;77:394–8.Google Scholar
  69. 69.
    Ferrer-Lopez P, Renesto P, Schattner M, et al. Activation of human platelets by C5a-stimulated neutrophils: a role for cathepson G. Am J Physiol. 1990;258:C1100–C7.PubMedCrossRefGoogle Scholar
  70. 70.
    Kondo C, Mizuno M, Nishikawa K, Yuzawa Y, Hotta N, Matsuo S. The role of C5a in the development of thrombotic glomerulonephritis in rats. Clin Exp Immunol. 2001;124:323–9.PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Mizuno T, Yoshioka K, Mizuno M, Shimizu M, Nagano F, Okuda T, et al. Complement component 5 promotes lethal thrombosis. Sci Rep. 2017;7:42714.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Kastl SP, Speidl WS, Kaun C, Rega G, Assadian A, Weiss TW, et al. The complement component C5a induces the expression of plasminogen activator inhibitor-1 in human macrophages via NF-kappaB activation. J Thromb Haemost. 2006;4(8):1790–7.PubMedCrossRefGoogle Scholar
  73. 73.
    Hess K, Alzahrani SH, Price JF, Strachan MW, Oxley N, King R, et al. Hypofibrinolysis in type 2 diabetes: the role of the inflammatory pathway and complement C3. Diabetologia. 2014;57(8):1737–41.PubMedCrossRefGoogle Scholar
  74. 74.
    King R, Tiede C, Simmons K, Fishwick C, Tomlinson D, Ajjan R. Inhibition of complement C3 and fibrinogen interaction: a potential novel therapeutic target to reduce cardiovascular disease in diabetes. Lancet. 2015;385(Suppl 1):S57.PubMedCrossRefGoogle Scholar
  75. 75.
    Campbell W, Okada N, Okada H. Carboxypeptidase R is an inactivator of complement-derived inflammatory peptides and an inhibitor of fibrinolysis. Immunol Rev. 2001;180:162–7.PubMedCrossRefGoogle Scholar
  76. 76.
    La Bonte LR, Pavlov VI, Tan YS, Takahashi K, Takahashi M, Banda NK, et al. Mannose-binding lectin-associated serine protease-1 is a significant contributor to coagulation in a murine model of occlusive thrombosis. J Immunol. 2012;188(2):885–91.PubMedCrossRefGoogle Scholar
  77. 77.
    Madsen DE, Sidelmann JJ, Biltoft D, Gram J, Hansen S. Ca-inhibitor plymers activate the FXII-dependent kallikrein-kinin system: Implication for a role in hereditary angioedema. Biochim Biophys Acta. 2015;1850(6):1336–42.PubMedCrossRefGoogle Scholar
  78. 78.
    Ravindran S, Schapira M, Patston PA. Modulation of C1-inhibitor and plasma kallikrein activities by thpe IV collagen. Int J Biomater. 2012;2012:212417.PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Zhou A, Huntington JA, Pannu NS, Carrell RW, Read RJ. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol. 2003;10(7):541–4.PubMedCrossRefGoogle Scholar
  80. 80.
    Zhong J, Yang HC, Kon V, Fogo AB, Lawrence DA, Ma J. Vitonectin-binding PAI-1 protects against the development of cardiac fibrosis through interaction with fibrosis. Lab Invest. 2014;94(6):633–44.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Amara U, Rittirsch D, Flierl M, Bruckner U, Klos A, Gebhard F, et al. Interaction between the coagulation and complement system. Adv Exp Med Biol. 2008;632:71–9.PubMedPubMedCentralGoogle Scholar
  82. 82.
    Mizuno M, Morgan BP. An update on the roles of the complement system in autoimmune diseases and the therapeutic possibilities of anti-complement agents. Curr Drug Therapy. 2011;6:35–50.CrossRefGoogle Scholar
  83. 83.
    Soto K, Wu YL, Ortiz A, Aparício SR, Yu CY. Familial C4B deficiency and immune complex glomerulonephritis. Clin Immunol. 2010;137(1):166–75.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Fijen CA, Kuijper EJ, te Bulte MT, Daha MR, Dankert J. Assessment of complement deficiency in patients with meningococcal disease in The Netherlands. Clin Infect Dis. 1999;28(1):98–105.PubMedCrossRefGoogle Scholar
  85. 85.
    Drogari-Apiranthitou M, Kuijper EJ, Dekker N, Dankert J. Complement activation and formation of the membrane attack complex on serogroup B Neisseria meningitidis in the presence or absence of serum bactericidal activity. Infect Immun. 2002;70(7):3752–8.PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    Rooryck C, Diaz-Font A, Osborn DPS, Chabchoub E, Hernandez-Hernandez V, Shamseldin H, et al. Mutations in the lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrom. Nat Gent. 2011; 43(3):197–203.CrossRefGoogle Scholar
  87. 87.
    Yongqing T, Wilmann PG, Reeve SB, Coetzer TH, Smith AI, Whisstock JC, et al. The X-ray crystal structure of mannose-binding lectin-associated serine proteinase-3 reveals the structural basis for enzyme inactivity associated with the Carnevale, Mingarelli, Malpuech, and Michels (3MC) syndrome. J Biol Chem. 2013;288(31):22399–407.PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Urquhart J, Roberts R, de Silva D, Shalev S, Chervinsky E, Nampoothiri S, et al. Exploring the genetic basis of 3MC syndrome: findings in 12 further families. Am J Med Genet A. 2016;170A(5):1216–24.PubMedCrossRefGoogle Scholar
  89. 89.
    Degn SE, Jensenius JC, Thiel S. Disease-causing mutations in genes of the complement system. Am J Hum Genet. 2011;88(6):689–705.PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Stojan G, Petri M. Anti-C1q in systemic lupus erythematosus. Lupus. 2016;25(8):873–7.PubMedCrossRefGoogle Scholar
  91. 91.
    Unterberger U, Eichelberger B, Ulz A, Panzer S. Antibodies against complement-regulatory proteins on platelets in immune thrombocytopenia. Platelets. 2016;13:1–5.Google Scholar
  92. 92.
    Horiuchi T, Ohi H, Ohsawa I, Fujita T, Matsushita M, Okada N, et al. Guideline for hereditary angioedema (HAE) 2010 by the Japanese association for complement research. Allergol Int. 2012;61(4):559–62.PubMedCrossRefGoogle Scholar
  93. 93.
    Varga L, Széplaki G, Visy B, Füst G, Harmat G, Miklós K, et al. C1-inhibitor (C1-INH) autoantibodies in hereditary angioedema. Strong correlation with the severity of disease in C1-INH concentrate naïve patients. Mol Immunol. 2007;44(6):1454–60.PubMedCrossRefGoogle Scholar
  94. 94.
    Haines JL, Hauser MA, Schmidt S, Scott WK, Olson LM, Gallins P, et al. Complement factor H variant increases the risk of age-related macular degeneration. Science. 2005;308(5720):419–21.PubMedCrossRefGoogle Scholar
  95. 95.
    Ito N, Ohashi R, Nagata M. C3 glomerulopathy and current dilemmas. Clin Exp Nephrol. 2016. doi: 10.1007/s10157-016-1358-5.PubMedCentralGoogle Scholar
  96. 96.
    Kato H, Nangaku M, Hataya H, Sawai T, Ashida A, Fujimaru R, et al. Joint Committee for the Revision of Clinical Guides of Atypical Hemolytic Uremic Syndrome in Japan. Clinical guides for atypical hemolytic uremic syndrome in Japan. Clin Exp Nephrol. 2016;20(4):536–43.PubMedCrossRefGoogle Scholar
  97. 97.
    Sawai T, Nangaku M, Ashida A, Fujimaru R, Hataya H, Hidaka Y, et al. Joint Committee of the Japanese Society of Nephrology and the Japan Pediatric Society. Diagnostic criteria for atypical hemolytic uremic syndrome proposed by the Joint Committee of the Japanese Society of Nephrology and the Japan Pediatric Society. Clin Exp Nephrol. 2014;18(1):4–9.PubMedCrossRefGoogle Scholar
  98. 98.
    Paixão-Cavalcante D, López-Trascasa M, Skattum L, Giclas PC, Goodship TH, de Córdoba SR, et al. Sensitive and specific assays for C3 nephritic factors clarify mechanisms underlying complement dysregulation. Kidney Int. 2012;82(10):1084–92.PubMedPubMedCentralCrossRefGoogle Scholar
  99. 99.
    Goodship TH, Pappworth IY, Toth T, Denton M, Houlberg K, McCormick F, et al. Factor H autoantibodies in membranoproliferative glomerulonephritis. Mol Immunol. 2012;52(2–3):200–6.PubMedCrossRefGoogle Scholar
  100. 100.
    Lambert JC, Heath S, Even G, Campion D, Sleegers K, Hiltunen M, et al. Genome-wide association study identifies variants at GLU and CR1 associated with Alzheimer’s disease. Nat Genet. 2009;41(10):1094–9.PubMedCrossRefGoogle Scholar
  101. 101.
    Ingram G, Loveless S, Howell OW, Hakobyan S, Dancey B, Harris CL, et al. Complement activation in multiple sclerosis plaques: an immunohistochemical analysis. Acta Neuropathol Commun. 2014;2:53.PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Tortajada A, Yébenes H, Abarrategui-Garrido C, Anter J, García-Fernández JM, Martínez-Barricarte R, et al. C3 glomerulopathy-associated CFHR1 mutation alters FHR oligomerization and complement regulation. J Clin Invest. 2013;123(6):2434–46.PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Martínez-Barricarte R, Heurich M, Valdes-Cañedo F, Vazquez-Martul E, Torreira E, Montes T, et al. Human C3 mutation reveals a mechanism of dense deposit disease pathogenesis and provides insights into complement activation and regulation. J Clin Invest. 2010;120(10):3702–12.PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Goicoechea de Jorge E, Harris CL, Esparza-Gordillo J, Carreras L, Arranz EA, Garrido CA, et al. Gain-of-function mutations in complement factor B are associated with atypical hemolytic uremic syndrome. Proc Natl Acad Sci USA. 2007;104(1):240–5.PubMedCrossRefGoogle Scholar
  105. 105.
    Martínez-Barricarte R, Heurich M, López-Perrote A, Tortajada A, Pinto S, López-Trascasa M, et al. The molecular and structural bases for the association of complement C3 mutations with atypical hemolytic uremic syndrome. Mol Immunol. 2015;66(2):263–73.PubMedPubMedCentralCrossRefGoogle Scholar
  106. 106.
    Yoshida Y, Miyata T, Matsumoto M, Shirotani-Ikejima H, Uchida Y, Ohyama Y, et al. A novel quantitative hemolytic assay coupled with restriction fragment length polymorphisms analysis enabled early diagnosis of atypical hemolytic uremic syndrome and identified unique predisposing mutations in Japan. PLoS One. 2015;10:e0124655.PubMedPubMedCentralCrossRefGoogle Scholar
  107. 107.
    Zipfel PF MC, Müller D, Licht C, Wigger M, Skerka C; European DEAP-HUS Study Group. DEAP-HUS: deficiency of CFHR plasma proteins and autoantibody-positive form of hemolytic uremic syndrome. Pediatr Nephrol. 2010;25(10):2009–19.PubMedCrossRefGoogle Scholar
  108. 108.
    Mizuno M. A review of current knowledge of the complement system and the therapeutic opportunities in inflammatory arthritis. Curr Med Chem. 2006;13:1707–17.PubMedCrossRefGoogle Scholar
  109. 109.
    Cosio FG, Sedmak DD, Mahan JD, Nahman NSJ. Localization of decay accelerating factor in normal and diseased kidneys. Kidney Int. 1989;36:100–7.PubMedCrossRefGoogle Scholar
  110. 110.
    Tamai H, Matsuo S, Fukatsu A, Nishikawa K, Sakamoto N, Yoshioka K, et al. Localization of 2O-kD homologous restriction factor (HRF20) in diseased human glomeruli. An immunofluorescence study. Clin Exp Immunol. 1991;84:256–62.PubMedPubMedCentralCrossRefGoogle Scholar
  111. 111.
    Endoh M, Yamashina M, Ohi H, Funahashi K, Ikuno T, Yasugi T, et al. Immunohistochemical demonstration of membrane cofactor protein (MCP) of complement in normal and diseased kidney tissues. Clin Exp Immunol. 1993;94:183–8.Google Scholar
  112. 112.
    Ichida S, Yuzawa Y, Okada H, Yoshioka K, .S. M.. Localization of the complement regulatory proteins in the normal human kidney. Kidney Int. 1994;46:89–96.PubMedCrossRefGoogle Scholar
  113. 113.
    Matsuo S, Morita Y, Mizuno M, Nishikawa K, Yuzawa Y. Complement mediated renal injury: Its mechanisms and role of membrane regulators of complement. Clin Exp Nephrol. 1998;2:276–81.CrossRefGoogle Scholar
  114. 114.
    Hanafusa N, Sogabe H, Yamada K, Wada T, Fujita T, Nangaku M. Contribution of genetically engineered animals to the analyses of complement in the pathogenesis of nephritis. Nephrol Dial Transplant. 2002;17(Suppl 9):34–6.PubMedCrossRefGoogle Scholar
  115. 115.
    Mizuno M, Nozaki M, Morine N, Suzuki N, Nishikawa K, Morgan BP, et al. A protein toxin from the sea anemone Phyllodiscus semoni targets the kidney and causes a severe renal Injury with predominant glomerular endothelial damage. Am J Pathol. 2007;171(2):402–14.PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Hatanaka Y, Yuzawa Y, Nishikawa K, Fukatsu A, Okada N, Okada H, et al. Role of a rat membrane inhibitor of complement in anti-basement membrane antibody-induced renal injury. Kidney Int. 1995;48:1728–37.PubMedCrossRefGoogle Scholar
  117. 117.
    Nangaku M, Alpers CE, Pippin J, Shankland SJ, Kurokawa K, Adler S, et al. Renal microvascular injury induced by antibody to glomerular endothelial cells is mediated by C5b-9. Kidney Int. 1997;52:1570–8.PubMedCrossRefGoogle Scholar
  118. 118.
    Yashima A, Mizuno M, Yuzawa Y, Shimada K, Suzuki N, Tawada H, et al. Mesangial proliferative glomerulonephritis in murine malaria parasite, Plasmodium chabaudi AS, infected NC mice. Clin Exp Nephrol. 2016 (in press)Google Scholar
  119. 119.
    Mizuno M, Ito Y, Morgan BP. Exploiting the nephrotoxic effects of venom from the sea anemone, Phyllodiscus semoni, to create a hemolytic uremic syndrome model in the rat. Mar Drugs. 2012;10(7):1582–604.PubMedPubMedCentralCrossRefGoogle Scholar
  120. 120.
    Yamamoto ET, Mizuno M, Nishikawa K, Miyazawa S, Zhang L, Matsuo S, et al. Shiga toxin-1 causes direct renal injury in rats. Infect Immun. 2005;73:7099–106.PubMedPubMedCentralCrossRefGoogle Scholar
  121. 121.
    Sethi S, Nasr SH, De Vriese AS, Fervenza FC. C4d as a diagnostic tool in proliferative GN. J Am Soc Nephrol. 2015;26(11):2852–9.PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Sethi S, Nester CM, Smith RJ. Membranoproliferative glomerulonephritis and C3 glomerulopathy: resolving the confusion. Kidney Int. 2012;81(5):434–41.PubMedCrossRefGoogle Scholar
  123. 123.
    Sheerin NS, Springall T, Carroll MC, Hartley B, Sacks SH. Protection against anti-glomerular basement membrane (GBM)-mediated nephritis in C3- and C4-deficient mice. Clin Exp Immunol. 1997;110(3):403–9.PubMedPubMedCentralCrossRefGoogle Scholar
  124. 124.
    Thanei S, Vanhecke D, Trendelenburg M. Anti-C1q autoantibodies from systemic lupus erythematosus patients activate the complement system via both the classical and lectin pathways. Clin Immunol. 2015;160(2):180–7.PubMedCrossRefGoogle Scholar
  125. 125.
    Kim MK, Maeng YI, Lee SJ, Lee IH, Bae J, Kang YN, et al. Pathogenesis and significance of glomerular C4d deposition in lupus nephritis: activation of classical and lectin pathways. Int J Clin Exp Pathol. 2013;15(6):2157–67.Google Scholar
  126. 126.
    Segawa Y, Hisano S, Matsushita M, Fujita T, Hirose S, Takeshita M, et al. IgG subclasses and complement pathway in segmental and global membranous nephropathy. Pediatr Nephrol. 2010;25(6):1091–9.PubMedCrossRefGoogle Scholar
  127. 127.
    Kawa S. The immunobiology of immunoglobulin G4 and complement activation pathways in IgG4-related disease. Curr Top Microbiol Immunol. 2017;401:61–73.PubMedGoogle Scholar
  128. 128.
    Ma R, Cui Z, Hu SY, Jia XY, Yang R, Zheng X, et al. The alternative pathway of complement activation may be involved in the renal damage of human anti-glomerular basement membrane disease. PLoS One. 2016;9(3):e92150.Google Scholar
  129. 129.
    Daha MR, van Kooten C. Role of complement in IgA nephropathy. J Nephrol. 2016;29(1):1–4.PubMedCrossRefGoogle Scholar
  130. 130.
    Yuan J, Chen M, Zhao MH. Complement in antineutrophil cytoplasmic antibody-associated vasculitis. Clin Exp Nephrol. 2013;17(5):642–5.PubMedCrossRefGoogle Scholar
  131. 131.
    Kallenberg CG, Heeringa P. Complement system activation in ANCA vasculitis: a translational success story? Mol Immunol. 2015;68(1):53–6.PubMedCrossRefGoogle Scholar
  132. 132.
    Borza DB. Alternative pathway dysregulation and the conundrum of complement activation by IgG4 immune complexes in membranous nephropathy. Front Immunol. 2016;7:157.PubMedPubMedCentralCrossRefGoogle Scholar
  133. 133.
    Farrar CA, Tran D, Li K, Wu W, Peng Q, Schwaeble W, et al. Collectin-11 detects stress-induced L-fucose pattern to trigger renal epithelial injury. J Clin Invest. 2016;126(5):1911–25.PubMedPubMedCentralCrossRefGoogle Scholar
  134. 134.
    Gerard NP, Gerard C. The chemotactic receptor for human C5a anaphylatoxin. Nature. 1991;349:614–7.PubMedCrossRefGoogle Scholar
  135. 135.
    Chao TH, Ember JA, Wang M, Bayon Y, Hugli TE, Ye RD. Role of the second extracellular loop of human C3a receptor in agonist binding and receptor function. J Biol Chem. 1999;274:9721–8.PubMedCrossRefGoogle Scholar
  136. 136.
    Scola AM, Johswich KO, Morgan BP, Klos A, Monk PN. The human complement fragment receptor, C5L2, is a recycling decoy receptor. Mol Immunol. 2009;46(6):1149–62.PubMedPubMedCentralCrossRefGoogle Scholar
  137. 137.
    Braun MC, Reins RY, Li TB, et al. Renal expression of the C3a receptor and functional responses of primary human proximal tubular epithelial cells. J Immunol. 2004;173:4190–6.PubMedCrossRefGoogle Scholar
  138. 138.
    Mizuno M, Blanchin S, Gasque P, Nishikawa K, Matsuo S. High levels of complement C3a receptor in the glomeruli in lupus nephritis. Am J Kidney Dis. 2007;49:598–606.PubMedCrossRefGoogle Scholar
  139. 139.
    Kiafard Z TT, Schweyer S, Bley A, Neumann D, Zwirner J. Use of monoclonal antibodies to assess expression of anaphylatoxin receptors in tubular epithelial cells of human, murine and rat kidneys. Immunobiology. 2007;212:129–39.PubMedCrossRefGoogle Scholar
  140. 140.
    Bao L, Osawe I, Haas M, Quigg RJ. Signaling through up-regulated C3a receptor is key to the development of experimental lupus nephritis. J Immunol. 2005;175(3):1947–55.PubMedCrossRefGoogle Scholar
  141. 141.
    Schreiber A, Xiao H, Jennette JC, Schneider W, Luft FC, Kettritz R. C5a receptor mediated neutrophil activation and ANCA-induced glomerulonephritis. J Am Soc Nephrol. 2009;20:289–98.PubMedPubMedCentralCrossRefGoogle Scholar
  142. 142.
    Huugen D, van Esch A, Xiao H, Peutz-Kootstra CJ, Buurman WA, Tervaert JW, et al. Inhibition of complement factor C5 protects against anti-myeloperoxidase antibody-mediated glomerulonephritis in mice. Kidney Int. 2007;71(7):646–54.PubMedCrossRefGoogle Scholar
  143. 143.
    Xiao H, Schreiber A, Heeringa P, Falk RJ, Jennette JC. Alternative complement pathway in the pathogenesis of disease mediated by anti-neutrophil cytoplasmic autoantibodies. Am J Pathol. 2007;170(1):52–64.PubMedPubMedCentralCrossRefGoogle Scholar
  144. 144.
    Wenderfer SE, Wang H, Ke B, Wetsel RA, Braun MC. C3a receptor deficiency accelerates the onset of renal injury in the MRL/lpr mouse. Mol Immunol. 2009;46:1397–404.PubMedPubMedCentralCrossRefGoogle Scholar
  145. 145.
    Yamada K, Hori Y, Hanafusa N, Okuda T, Nagano N, Choi-Miura NH, et al. Clusterin is up-regulated in glomerular mesangial cells in complement-mediated injury. Kidney Int. 2001;59(1):137–46.PubMedCrossRefGoogle Scholar
  146. 146.
    Rioux P. TP-10 (AVANT Immunotherapeutics). Curr Opin Investig Drugs. 2001;2(3):364–71.PubMedGoogle Scholar
  147. 147.
    Schmid RA, Hillinger S, Hamacher J, Stammberger U. TP20 is superior to TP10 in reducing ischemia/reperfusion injury in rat lung grafts. Transplant Proc. 2001;33(1–2):948–9.PubMedCrossRefGoogle Scholar
  148. 148.
    Yazdanbakhsh K, Scaradavou A. CR1-based inhibitors for prevention of complement-mediated immune hemolysis. Drug News Perspect. 2004;17(5):314–20.PubMedCrossRefGoogle Scholar
  149. 149.
    Bowen T CM, Farkas H, et al. Canadian 2003 internatinal consensus alogrithm for the diagnosis, therapy, and management of hereditary angioedema. J Allergy Clin Immunol. 2003;114:629–937.CrossRefGoogle Scholar
  150. 150.
    Luzzatto L, Gianfaldoni G. Recent advances in biological and clinical aspects of paroxysmal nocturnal hemoglobinuria. Int J Hematol. 2006;84:104–12.PubMedCrossRefGoogle Scholar
  151. 151.
    Mahaffey KW, Granger CB, Nicolau JC, et al. Effect of pexelizumab, an anti-C5 complement antibody, as adjunctive therapy to fibrinolysis in acute myocardial infarction: the COMPlement inhibition in myocardial infarction treated with thromboLYtics (COMPLY) trial. Circulation. 2003;108(10):1176–83.PubMedCrossRefGoogle Scholar
  152. 152.
    Nunn MA, Sharma A, Paesen GC, et al. Complement inhibitor of C5 activation from the soft tick Ornithodoros moubata. J Immunol. 2005;174:2084–91.PubMedCrossRefGoogle Scholar
  153. 153.
    Ring T, Pedersen BB, Salkus G, Goodship TH. Use of eculizumab in crescentic IgA nephropathy: proof of principle and conundrum? Clin Kidney J. 2015;8(5):489–91.PubMedPubMedCentralCrossRefGoogle Scholar
  154. 154.
    Pickering MC, Ismajli M, Condon MB, McKenna N, Hall AE, Lightstone L, et al. Eculizumab as rescue therapy in severe resistant lupus nephritis. Rheumatology (Oxford). 2015;54(12):2286–8.Google Scholar
  155. 155.
    Jordan SC, Choi J, Kahwaji J, Vo A. Complement inhibition for prevention and treatment of antibody-mediated rejection in renal allograft recipients. Transplant Proc. 2016;48(3):806–8.PubMedCrossRefGoogle Scholar
  156. 156.
    Nishimura J, Yamamoto M, Hayashi S, et al. Genetic variants in C5 and poor response to eculizumab. N Engl J Med. 2014;370(7):632–9.PubMedCrossRefGoogle Scholar
  157. 157.
    Fraser DA, Harris CL, Williams AS, Mizuno M, Sean Gallagher S, Smith RAG, et al. Generation of a recombinant, membrane-targeted form of the complement regulator CD59. J Biol Chem. 2003;278(49):48921–7.PubMedCrossRefGoogle Scholar
  158. 158.
    Franco DA, Truran S, Burciu C, Gutterman DD, Maltagliati A, Weissig V, et al. Protective role of clusterin in preserving endothelial function in AL amyloidosis. Atherosclerosis. 2012;225(1):220–3.PubMedPubMedCentralCrossRefGoogle Scholar
  159. 159.
    Yuan X, Gavriilaki E, Thanassi JA, Yang G, Baines AC, Podos SD, et al. Small-molecule Factor D inhibitors selectively block the althernative pathway of complement in paroxysmal nocturnal hemoglobinuria and atypical uremic syndrome. Haematologica. 2017;102(3):466–75.PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Japanese Society of Nephrology 2017

Authors and Affiliations

  1. 1.Renal Replacement Therapy, Division of NephrologyNagoya University Graduate School of MedicineNagoyaJapan

Personalised recommendations