Skip to main content

Advertisement

Log in

A microarray analysis of urinary microRNAs in renal diseases

  • Original Article
  • Published:
Clinical and Experimental Nephrology Aims and scope Submit manuscript

Abstract

Background

MicroRNAs (miRNAs), a family of endogenous small non-coding RNAs, are associated with the development of renal diseases. To clarify whether urinary miRNAs (UmiRNAs) can be used for the evaluation of renal disease, we examined the profiles of UmiRNAs in various renal diseases.

Methods

We extracted miRNAs from urine specimens of 5 healthy controls and 71 patients with renal diseases, and we examined the correlation between clinical and histological parameters and the profile of UmiRNAs by microarray analysis.

Results

The urinary concentration of miRNAs increased in patients with renal disease compared with healthy controls, and the levels correlated with urinary protein and the degree of glomerular sclerosis. The microarray analysis detected 83–137 distinct UmiRNAs. We observed 80–99 % of the miRNAs in both the healthy controls and the renal disease patients. The majority of UmiRNAs displayed higher signal intensity in renal disease patients than in healthy controls, including 39 miRNAs exhibiting signal intensities 100 times greater than in healthy controls. A different pattern of UmiRNAs was observed in each type of renal disease. A comparison of renal tissue and UmiRNAs revealed that the sample profiles were similar and that their signal intensity was significantly correlated.

Conclusion

This study demonstrated that UmiRNAs are correlated with renal pathological changes and that the profile of UmiRNAs presented different patterns corresponding to the type of renal disease. These results suggest that UmiRNAs can potentially be used as novel biomarkers for renal diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Kato M, Arce L, Natarajan R. MicroRNAs and their role in progressive kidney diseases. Clin J Am Soc Nephrol. 2009;4:1255–66.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  2. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12:861–74.

    Article  PubMed  CAS  Google Scholar 

  3. Ho J, Ng KH, Rosen S, Dostal A, Gregory RI, Kreidberg JA. Podocyte-specific loss of functional microRNAs leads to rapid glomerular and tubular injury. J Am Soc Nephrol. 2008;19:2069–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  4. Shi S, Yu L, Chiu C, Sun Y, Chen J, Khitrov G, et al. Podocyte-selective deletion of dicer induces proteinuria and glomerulosclerosis. J Am Soc Nephrol. 2008;19:2159–69.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Wang G, Kwan BC, Lai FM, Choi PC, Chow KM, Li PK, et al. Intrarenal expression of microRNAs in patients with IgA nephropathy. Lab Invest. 2010;90:98–103.

    Article  PubMed  CAS  Google Scholar 

  6. Krupa A, Jenkins R, Luo DD, Lewis A, Phillips A, Fraser D. Loss of MicroRNA-192 promotes fibrogenesis in diabetic nephropathy. J Am Soc Nephrol. 2010;21:438–47.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Wang G, Kwan BC, Lai FM, Choi PC, Chow KM, Li PK, et al. Intrarenal expression of miRNAs in patients with hypertensive nephrosclerosis. Am J Hypertens. 2010;23:78–84.

    Article  PubMed  Google Scholar 

  8. Lu J, Kwan BC, Lai FM, Tam LS, Li EK, Chow KM, et al. Glomerular and tubulointerstitial miR-638, miR-198 and miR-146a expression in lupus nephritis. Nephrology (Carlton). 2012;17:346–51.

    Article  CAS  Google Scholar 

  9. Glowacki F, Savary G, Gnemmi V, Buob D, Van der Hauwaert C, Lo-Guidice JM, et al. Increased circulating miR-21 levels are associated with kidney fibrosis. PLoS One. 2013;8:e58014.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  10. Wang G, Kwan BC, Lai FM, Chow KM, Kam-Tao Li P, et al. Expression of microRNAs in the urinary sediment of patients with IgA nephropathy. Dis Markers. 2010;28:79–86.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Wang G, Kwan BC, Lai FM, Chow KM, Li PK, Szeto CC. Elevated levels of miR-146a and miR-155 in kidney biopsy and urine from patients with IgA nephropathy. Dis Markers. 2011;30:171–9.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Wang G, Kwan BC, Lai FM, Chow KM, Li PK, Szeto CC. Urinary sediment miRNA levels in adult nephrotic syndrome. Clin Chim Acta. 2013;418:5–11.

    Article  PubMed  CAS  Google Scholar 

  13. Luo Y, Wang C, Chen X, Zhong T, Cai X, Chen S, et al. Increased serum and urinary MicroRNAs in children with idiopathic nephrotic syndrome. Clin Chem. 2013;59:658–66.

    Article  PubMed  CAS  Google Scholar 

  14. Wang G, Tam LS, Li EK, Kwan BC, Chow KM, Luk CC, et al. Serum and urinary free microRNA level in patients with systemic lupus erythematosus. Lupus. 2011;20:493–500.

    Article  PubMed  CAS  Google Scholar 

  15. Lorenzen JM, Thum T. Circulating and urinary microRNAs in kidney disease. Clin J Am Soc Nephrol. 2012;7:1528–33.

    Article  PubMed  CAS  Google Scholar 

  16. Scian MJ, Maluf DG, David KG, Archer KJ, Suh JL, Wolen AR, et al. MicroRNA profiles in allograft tissues and paired urines associate with chronic allograft dysfunction with IF/TA. Am J Transplant. 2011;11:2110–22.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Ichii O, Otsuka S, Sasaki N, Namiki Y, Hashimoto Y, Kon Y. Altered expression of microRNA miR-146a correlates with the development of chronic renal inflammation. Kidney Int. 2012;81:280–92.

    Article  PubMed  CAS  Google Scholar 

  18. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clin Chem. 2010;56:1733–41.

    Article  PubMed  CAS  Google Scholar 

  19. Argyropoulos C, Wang K, McClarty S, Huang D, Bernardo J, Ellis D, et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLoS One. 2013;8:e54662.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, et al. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–92.

    Article  PubMed  CAS  Google Scholar 

  21. Takahashi T, Konta T, Takasaki S, Ichikawa K, Takeishi Y, Kubota I. An angiotensin II type-I receptor blocker, olmesartan medoxomil, attenuates lipid peroxidation in renal injury induced by subtotal nephrectomy. Clin Exp Nephrol. 2007;11:202–8.

    Article  PubMed  CAS  Google Scholar 

  22. Miura K, Miura S, Yamasaki K, Higashijima A, Kinoshita A, Yoshiura K, et al. Identification of pregnancy-associated microRNAs in maternal plasma. Clin Chem. 2010;56:1767–71.

    Article  PubMed  CAS  Google Scholar 

  23. Li JY, Yong TY, Michael MZ, Gleadle JM. The role of microRNAs in kidney disease. Nephrology (Carlton). 2010;15:599–608.

    Article  CAS  Google Scholar 

  24. Pisitkun T, Shen RF, Knepper MA. Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA. 2004;101:13368–73.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Miranda KC, Bond DT, McKee M, Skog J, Păunescu TG, Da Silva N, et al. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 2010;78:191–9.

    Article  PubMed  Google Scholar 

  26. Denby L, Ramdas V, McBride MW, Wang J, Robinson H, McClure J, et al. miR-21 and miR-214 are consistently modulated during renal injury in rodent models. Am J Pathol. 2011;179:661–72.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  27. Zhong X, Chung AC, Chen HY, Dong Y, Meng XM, Li R, et al. miR-21 is a key therapeutic target for renal injury in a mouse model of type 2 diabetes. Diabetologia. 2013;56:663–74.

    Article  PubMed  CAS  Google Scholar 

  28. Godwin JG, Ge X, Stephan K, Jurisch A, Tullius SG, Iacomini J. Identification of a microRNA signature of renal ischemia reperfusion injury. Proc Natl Acad Sci USA. 2010;107:14339–44.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Xu X, Kriegel AJ, Liu Y, Usa K, Mladinov D, Liu H, et al. Delayed ischemic preconditioning contributes to renal protection by upregulation of miR-21. Kidney Int. 2012;82:1167–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Wang N, Zhou Y, Jiang L, Li D, Yang J, Zhang CY, et al. Urinary microRNA-10a and microRNA-30d serve as novel, sensitive and specific biomarkers for kidney injury. PLoS One. 2012;7:e51140.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Macconi D, Tomasoni S, Romagnani P, Trionfini P, Sangalli F, Mazzinghi B, et al. MicroRNA-324-3p promotes renal fibrosis and is a target of ACE inhibition. J Am Soc Nephrol. 2012;23:1496–505.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  32. Tatarano S, Chiyomaru T, Kawakami K, Enokida H, Yoshino H, Hidaka H, et al. Novel oncogenic function of mesoderm development candidate 1 and its regulation by MiR-574-3p in bladder cancer cell lines. Int J Oncol. 2012;40:951–9.

    PubMed  CAS  PubMed Central  Google Scholar 

  33. Su Y, Ni Z, Wang G, Cui J, Wei C, Wang J, et al. Aberrant expression of microRNAs in gastric cancer and biological significance of miR-574-3p. Int Immunopharmacol. 2012;13:468–75.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Guérit D, Philipot D, Chuchana P, Toupet K, Brondello JM, Mathieu M, et al. Sox9-regulated miRNA-574-3p inhibits chondrogenic differentiation of mesenchymal stem cells. PLoS One. 2013;8:e62582.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Camussi G, Deregibus MC, Bruno S, Cantaluppi V, Biancone L. Exosomes/microvesicles as a mechanism of cell-to-cell communication. Kidney Int. 2010;78:838–48.

    Article  PubMed  CAS  Google Scholar 

  36. Alvarez ML, Khosroheidari M, Kanchi Ravi R, DiStefano JK. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney Int. 2012;82:1024–32.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported in part by a Grant-in-Aid for Scientific Research (C) 23591178 from the Ministry of Health, Labor and Welfare of Japan and a Grant-in-Aid from the Japan Society for the Promotion of Science Global COE program.

Conflict of interest

All the authors have declared no competing interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tsuneo Konta.

About this article

Cite this article

Konta, T., Ichikawa, K., Suzuki, K. et al. A microarray analysis of urinary microRNAs in renal diseases. Clin Exp Nephrol 18, 711–717 (2014). https://doi.org/10.1007/s10157-013-0906-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10157-013-0906-5

Keywords

Navigation