Skip to main content

Advertisement

Log in

Direct target NOTES: prospective applications for next generation robotic platforms

  • Multimedia Article
  • Published:
Techniques in Coloproctology Aims and scope Submit manuscript

Abstract

Background

A new era in surgical robotics has centered on alternative access to anatomic targets and next generation designs include flexible, single-port systems which follow circuitous rather than straight pathways. Such systems maintain a small footprint and could be utilized for specialized operations based on direct organ target natural orifice transluminal endoscopic surgery (NOTES), of which transanal total mesorectal excision (taTME) is an important derivative.

Methods

During two sessions, four direct target NOTES operations were conducted on a cadaveric model using a flexible robotic system to demonstrate proof-of-concept of the application of a next generation robotic system to specific types of NOTES operations, all of which required removal of a direct target organ through natural orifice access. These four operations were (a) robotic taTME, (b) robotic transvaginal hysterectomy in conjunction with (c) robotic transvaginal salpingo-oophorectomy, and in an ex vivo model, (d) trans-cecal appendectomy.

Results

Feasibility was demonstrated in all cases using the Flex® Robotic System with Colorectal Drive. During taTME, the platform excursion was 17 cm along a non-linear path; operative time was 57 min for the transanal portion of the dissection. Robotic transvaginal hysterectomy was successfully completed in 78 min with transvaginal extraction of the uterus, although laparoscopic assistance was required. Robotic transvaginal unilateral salpingo-oophorectomy with transvaginal extraction of the ovary and fallopian tube was performed without laparoscopic assistance in 13.5 min. In an ex vivo model, a robotic trans-cecal appendectomy was also successfully performed for the purpose of demonstrating proof-of-concept only; this was completed in 24 min.

Conclusions

A flexible robotic system has the potential to access anatomy along circuitous paths, making it a suitable platform for direct target NOTES. The conceptual operations posed could be considered suitable for next generation robotics once the technology is optimized, and after further preclinical validation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Rao P, Reddy N (2004) Per oral transgastric endoscopic appendectomy in human. In: Proceedings of the 45th annual conference of the society of gastrointestinal endoscopy of India, Jaipur 28–29

  2. Rattner D, Kalloo A, ASGE/SAGES Working Group (2005) ASGE/SAGES working group on natural ori ce translumenal endoscopic surgery. Surg Endosc 20:329–333

    Article  Google Scholar 

  3. Rattner D (2006) Introduction to NOTES White Paper. Surg Endosc 20:185

    Article  PubMed  CAS  Google Scholar 

  4. McGee MF, Rosen MJ, Marks J et al (2006) A primer on natural orifice transluminal endoscopic surgery: building a new paradigm. Surg Inno 13(2):86–93

    Article  Google Scholar 

  5. Rattner DW, Hawes R, Schwaitzberg S, Kochman M, Swanstrom L (2011) The second SAGES/ASGE white paper on natural orifice transluminal endoscopic surgery: 5 years of progress. Surg Endosc 1 25(8):2441–2448

    Article  PubMed  Google Scholar 

  6. Atallah S, Martin-Perez B, Keller D, Burke J, Hunter L (2015) Natural-orifice transluminal endoscopic surgery. Br J Surg 102(2):e73–92. https://doi.org/10.1002/bjs.9710

    Article  PubMed  CAS  Google Scholar 

  7. Arezzo A, Zornig C, Mod H et al (2013) The EURO-NOTES clinical registry for natural orifice transluminal endoscopic surgery: a 2-year activity report. Surg Endosc 27:3073–3084

    Article  PubMed  Google Scholar 

  8. Zorron R, Palanivelu C, Galvão Neto MP et al (2010) International multicenter trial on clinical natural orifice surgery—NOTES IMTN study: preliminary results of 362 patients. Surg Innov 17:142–158

    Article  PubMed  Google Scholar 

  9. Lang S, Mattheis S, Hasskamp P et al (2017) A European multicenter study evaluating the flex robotic system in transoral robotic surgery. Laryngoscope 127(2):391–395. https://doi.org/10.1002/lary.26358

    Article  PubMed  Google Scholar 

  10. Atallah S (2017) Assessment of a flexible robotic system for endoluminal applications and transanal total mesorectal excision (taTME): could this be the solution we have been searching for? Tech Coloproctol 21(10):809–814. https://doi.org/10.1007/s10151-017-1697-6

    Article  PubMed  CAS  Google Scholar 

  11. Penna M, Hompes R, Arnold S et al (2017) Transanal total mesorectal excision: international registry results of the first 720 cases. Ann Surg 266(1):111–117

    Article  PubMed  Google Scholar 

  12. Arroyave MC, DeLacy FB, Lacy AM (2017) Transanal total mesorectal excision (TaTME) for rectal cancer: step by step description of the surgical technique for a two-teams approach. Eur J Surg Oncol 43(2):502–505

    Article  PubMed  CAS  Google Scholar 

  13. Atallah S, Albert M, Nassif G, Polavarapu H, Larach S (2013) Transanal minimally invasive surgery for total mesorectal excision (TAMIS–TME): a stepwise description of the surgical technique with video demonstration. Tech Coloproctol 17(3):321–325

    Article  PubMed  CAS  Google Scholar 

  14. Marks JH, Lopez-Acevedo N, Krishnan B, Johnson MN, Montenegro GA, Marks GJ (2016) True NOTES TME resection with splenic flexure release, high ligation of IMA, and side-to-end hand-sewn coloanal anastomosis. Surg Endosc 30(10):4626–4631

    Article  PubMed  Google Scholar 

  15. Leroy J, Barry BD, Melani A, Mutter D, Marescaux J (2013) No-scar transanal total mesorectal excision: the last step to pure NOTES for colorectal surgery. JAMA Surg 148(3):226–230

    Article  PubMed  Google Scholar 

  16. Chouillard E, Chahine E, Khoury G,et al (2014) NOTES total mesorectal excision (TME) for patients with rectal neoplasia: a preliminary experience. Surg Endosc 28(11):3150–3157

    Article  PubMed  CAS  Google Scholar 

  17. Zhang H, Zhang YS, Jin XW, Li MZ, Fan JS, Yang ZH (2013) Transanal single-port laparoscopic total mesorectal excision in the treatment of rectal cancer. Tech Coloproctol 17(1):117–123

    Article  PubMed  CAS  Google Scholar 

  18. Leão P, Goulart A, Veiga C et al (2015) Transanal total mesorectal excision: a pure NOTES approach for selected patients. Tech Coloproctol 19(9):541–549

    Article  PubMed  Google Scholar 

  19. Geller EJ (2014) Vaginal hysterectomy: the original minimally invasive surgery. Minerva Ginecol 66:23–33

    PubMed  CAS  Google Scholar 

  20. Atallah S, Albert M, Larach S (2010) Transanal minimally invasive surgery: a giant leap forward. Surg Endosc 24(9):2200–2205

    Article  PubMed  Google Scholar 

  21. Atallah S, Martin-Perez B, Schoonyoung H et al (2014) Vaginal access minimally invasive surgery: a new approach to hysterectomy. J Minim Invasive Gynecol 21(6):S116

    Article  Google Scholar 

  22. Atallah S, Martin-Perez B, Albert M,et al (2015) Vaginal access minimally invasive surgery (VAMIS): a new approach to hysterectomy. Surg Innov 22(4):344–347. https://doi.org/10.1177/1553350614560273

    Article  PubMed  Google Scholar 

  23. Atallah S, Dubose A, Larach S (2017) Vaginal access minimally invasive surgery for repair of a postanastomotic rectovaginal fistula: a video description of a novel method. Dis Colon Rectum 60(1):126–127

    Article  PubMed  Google Scholar 

  24. Baekelandt J, Cavens D (2016) GelPOINT (Applied Medical) is a suitable port for transvaginal NOTES procedures. J Gynecol Surg 32(5):257–262

    Article  Google Scholar 

  25. Baekelandt J (2015) Total vaginal NOTES hysterectomy: a new approach to hysterectomy. J Minim Invasive Gynecol 22(6):1088–1094

    Article  PubMed  Google Scholar 

  26. Rassweiler JJ, Autorino R, Klein J, Mottrie A, Goezen AS, Stolzenburg JU, Rha KH, Schurr M, Kaouk J, Patel V, Dasgupta P, Liatsikos E (2017) Future of robotic surgery in urology. BJU Int. https://doi.org/10.1111/bju.13851

    Article  PubMed  Google Scholar 

  27. Palanivelu C, Rajan PS, Rangarajan M, Parthasarathi R, Senthilnathan P, Prasad M (2008) Transvaginal endoscopic appendectomy in humans: a unique approach to NOTES—world’s first report. Surg Endosc 22(5):1343–1347

    Article  PubMed  Google Scholar 

  28. Velthuis S, Veltcamp Helbach M et al (2015) Intra-abdominal bacterial contamination in TAMIS total mesorectal excision for rectal carcinoma: a prospective study. Surg Endosc 29(11):3319–3323. https://doi.org/10.1007/s00464-015-4089-x (Epub 2015 Feb 11)

    Article  PubMed  Google Scholar 

  29. Marks JH, Frenkel JL, Greenleaf CE, D’Andrea AP (2014) Transanal endoscopic microsurgery with entrance into the peritoneal cavity: is it safe? Dis Colon Rectum 57(10):1176–1182

    Article  PubMed  Google Scholar 

  30. Gavagan JA, Whiteford MH, Swanstrom LL (2004) Full-thickness intraperitoneal excision by transanal endoscopic microsurgery does not increase short-term complications. Am J Surg 187(5):630–634

    Article  PubMed  Google Scholar 

  31. Trastulli S, Coratti A, Guarino S et al (2015) Robotic right colectomy with intracorporeal anastomosis compared with laparoscopic right colectomy with extracorporeal and intracorporeal anastomosis: a retrospective multicentre study. Surg Endosc 29(6):1512–1521. https://doi.org/10.1007/s00464-014-3835-9

    Article  PubMed  Google Scholar 

  32. Milone M, Elmore U, Di Salvo E et al (2015) Intracorporeal versus extracorporeal anastomosis. Results from a multicentre comparative study on 512 right-sided colorectal cancers. Surg Endosc 29(8):2314–2320. https://doi.org/10.1007/s00464-014-3950-7

    Article  PubMed  Google Scholar 

  33. Schmidt A, Bauerfeind P, Gubler C, Damm M, Bauder M, Caca K (2015) Endoscopic full-thickness resection in the colorectum with a novel over-the-scope device: first experience. Endoscopy 47(08):719–725

    Article  PubMed  Google Scholar 

  34. Schurr MO, Baur F, Ho CN, Anhoeck G, Kratt T, Gottwald T (2011) Endoluminal full-thickness resection of GI lesions: a new device and technique. Minim Invasive Ther Allied Technol 20(3):189–192. https://doi.org/10.3109/13645706.2011.582119

    Article  PubMed  Google Scholar 

  35. Schurr MO, Baur FE, Krautwald M,et al (2015) Endoscopic full-thickness resection and clip defect closure in the colon with the new FTRD system: experimental study. Surg Endosc 29(8):2434–2441

    Article  PubMed  Google Scholar 

  36. Schmidt A, Beyna T, Schumacher B et al (2017) Colonoscopic full-thickness resection using an over-the-scope device: a prospective multicentre study in various indications. Gut. https://doi.org/10.1136/gutjnl-2016-313677

    Article  PubMed  Google Scholar 

  37. Kantsevoy SV, Bitner M, Davis JM, Hajiyeva G, Thuluvath PJ, Gushchin V (2015) Endoscopic suturing closure of large iatrogenic colonic perforation. Gastrointest Endosc 82(4):754–755. https://doi.org/10.1016/j.gie.2015.05.031

    Article  PubMed  Google Scholar 

  38. Kantsevoy SV, Bitner M, Mitrakov AA, Thuluvath PJ (2014) Endoscopic suturing closure of large mucosal defects after endoscopic submucosal dissection is technically feasible, fast, and eliminates the need for hospitalization (with videos). Gastrointest Endosc 79(3):503–507. https://doi.org/10.1016/j.gie.2013.10.051

    Article  PubMed  Google Scholar 

  39. Atallah S, Albert M, DeBeche-Adams T, Nassif G, Polavarapu H, Larach S (2013) Transanal minimally invasive surgery for total mesorectal excision (TAMIS-TME): a stepwise description of the surgical technique with video demonstration. Tech Coloproctol 17(3):321–325. https://doi.org/10.1007/s10151-012-0971-x

    Article  PubMed  CAS  Google Scholar 

  40. Sylla P, Rattner DW, Delgado S, Lacy AM (2010) NOTES transanal rectal cancer resection using transanal endoscopic microsurgery and laparoscopic assistance. Surg Endosc 24(5):1205–1210

    Article  PubMed  Google Scholar 

  41. Araujo SE, Crawshaw B, Mendes CR, Delaney CP (2015) Transanal total mesorectal excision: a systematic review of the experimental and clinical evidence. Tech Coloproctol 19(2):69–82. https://doi.org/10.1007/s10151-014-1233-x (Epub 2014 Nov 9)

    Article  PubMed  CAS  Google Scholar 

  42. Atallah S, Martin-Perez B, Pinan J et al (2014) Robotic transanal total mesorectal excision: a pilot study. Tech Coloproctol 18:1047–1053

    Article  PubMed  CAS  Google Scholar 

  43. Gómez Ruiz M, Parra IM, Palazuelos CM,et al (2015) Robotic-assisted laparoscopic transanal total mesorectal excision for rectal cancer: a prospective pilot study. Dis Colon Rectum 58(1):145–153

    Article  PubMed  Google Scholar 

  44. Kuo LJ, Nqu JC, Tong YS, Chen CC (2017) Combined robotic transanal total esorectal excision (R-taTME) and single-site plus one-port (R-SSPO) technique for uotra-low rectal surgery-initial experience with a new operation approach. Int J Colorectal Dis 32(2):249–254

    Article  PubMed  Google Scholar 

  45. Huscher CG, Bretagnol F, Ponzano C (2015) Robotic-assisted transanal total mesorectal excision: the key against the Achilles’ heel of rectal cancer? Ann Surg 261(5):e120–e121

    Article  PubMed  Google Scholar 

  46. Marks J, Ng S, Mak T (2017) Robotic transanal surgery (RTAS) with utilization of a next-generation single-port system: a cadaveric feasibility study. Tech Coloproctol 21(7):541–545. https://doi.org/10.1007/s10151-017-1655-3

    Article  PubMed  CAS  Google Scholar 

  47. Peters BS, Armijo PR, Krause C, Choudhury SA, Oleynikov D (2018) Review of emerging surgical robotic technology. Surg Endosc 32(4):1636–1655. https://doi.org/10.1007/s00464-018-6079-2 (Epub 2018 Feb 13)

    Article  PubMed  Google Scholar 

  48. Ballantyne GH, Moll F (2003) The da Vinci telerobotic surgical system: the virtual operative field and telepresence surgery. Surg Clin 83(6):1293–1304

    Article  Google Scholar 

  49. Ballantyne GH (2002) Robotic surgery, telerobotic surgery, telepresence, and telementoring. Surg Endosc Other Intervent Techn 16(10):1389–1402

    Article  CAS  Google Scholar 

  50. Rawlings AL, Woodland JH, Vegunta RK, Crawford DL (2007) Robotic versus laparoscopic colectomy. Surg Endosc 21(10):1701–1708

    Article  PubMed  CAS  Google Scholar 

  51. Baik SH, Kwon HY, Kim JS,et al (2009) Robotic versus laparoscopic low anterior resection of rectal cancer: short-term outcome of a prospective comparative study. Ann Surg Onc 16(6):1480–1487

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Atallah.

Ethics declarations

Conflict of interest

S. Atallah is a paid consultant for ConMed, Inc, Applied Medical, Inc, THD, America, and has an ongoing consultant relationship with Medicaroid Robotics and MedRobotics, Inc. This research was supported by MedRobotics, division of Colorectal Surgery, Research and Development. The other authors declare that they have no conflict of interest.

Ethical approval

This research was performed in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was not applicable as the work represented herein did not involve human subjects. Cadaveric research was conducted in accordance with the standards set forth by ethics and scientific laboratory regulations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 36264 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atallah, S., Hodges, A. & Larach, S.W. Direct target NOTES: prospective applications for next generation robotic platforms. Tech Coloproctol 22, 363–371 (2018). https://doi.org/10.1007/s10151-018-1788-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10151-018-1788-z

Keywords

Navigation