Skip to main content

Advertisement

Log in

Total iron-binding capacity is a novel prognostic marker after curative gastrectomy for gastric cancer

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Patients with gastric cancer (GC) are affected by changes in iron status. Before surgery, GC patients are likely to have iron-deficiency anemia; and after gastrectomy, patients suffer from low nutritional status and low iron. This study investigated preoperative iron status associated with prognosis after curative gastrectomy for gastric cancer.

Methods

We evaluated preoperative serum hemoglobin (Hgb), Fe and total iron-binding capacity (TIBC) in 298 patients who underwent curative gastrectomy for GC without preoperative chemotherapy, and analyzed these factors’ associations with prognosis after surgery.

Results

Of the 298 patients, 129 (43.2%) had low Hgb levels, and 33 (11.1%) had low TIBC (< 260 µg/dl) that was not associated with Hgb or Fe level. Patients with low TIBC were significantly associated with older age (≥ 65 years old; P = 0.0085), low albumin (< 3.9 g/dl; P = 0.0388) and high CRP (≥ 0.15 mg/dl; P = 0.0018) in multivariate analysis. Low Fe (< 60 µg/dl) was not associated with disease-free survival (DFS) or overall survival (OS); however, low Fe was associated with longer cancer-specific survival in Stage III GC patients (P = 0.0333). Both low Hgb and low TIBC were significantly associated with shorter DFS (Hgb: P = 0.0433; TIBC: P < 0.0001) and shorter OS (Hgb: P = 0.0352; TIBC: P < 0.0001). Low TIBC were significantly associated with shorter DFS (HR 2.167, 95% CI 1.231–3.639, P = 0.0086) and shorter OS (HR 2.065, 95% CI 1.144–3.570, P = 0.0173) in multivariate Cox hazard regression analysis.

Conclusions

Preoperative serum TIBC level of GC patients who undergo curative gastrectomy is a novel prognostic marker in univariate and multivariate analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Torre LA, Bray F, Siegel RL et al (2015) Global cancer statistics, 2012. CA Cancer J Clin 65(2):87–108

    Article  PubMed  Google Scholar 

  2. Sasako M, Saka M, Fukagawa T et al (2007) Surgical treatment of advanced gastric cancer: Japanese perspective. Dig Surg 24(2):101–107

    Article  PubMed  CAS  Google Scholar 

  3. Torti SV, Torti FM (2013) Iron and cancer: more ore to be mined. Nat Rev Cancer 13(5):342–355

    PubMed  CAS  Google Scholar 

  4. Stevens RG, Jones DY, Micozzi MS et al (1988) Body iron stores and the risk of cancer. N Engl J Med 9(16):1047–1052

    Article  Google Scholar 

  5. Daniels TR, Delgado T, Rodriguez JA et al (2006) The transferrin receptor part I: Biology and targeting with cytotoxic antibodies for the treatment of cancer. Clin Immunol 121(2):144–158

    Article  PubMed  CAS  Google Scholar 

  6. Seres DS (2005) Surrogate nutrition markers, malnutrition, and adequacy of nutrition support. Nutr Clin Pract 20(3):308–313

    Article  PubMed  Google Scholar 

  7. Fonseca-Nunes A, Agudo A, Aranda N et al (2015) Body iron status and gastric cancer risk in the EURGAST study. Int J Cancer 137(12):2904–2914

    Article  PubMed  CAS  Google Scholar 

  8. Japanese Gastric Cancer Association (2017) Japanese gastric cancer treatment guidelines 2014 (ver. 4). Gastric Cancer 20(1):1–19

    Article  Google Scholar 

  9. Japanese Gastric Cancer Association (2010) Japanese gastric cancer treatment guidelines 2010 (ver. 3). Gastric Cancer 14(2):113–123

    Article  Google Scholar 

  10. Wang SC, Chou JF, Strong VE et al (2016) Pretreatment neutrophil to lymphocyte ratio independently predicts disease-specific survival in resectable gastroesophageal junction and gastric adenocarcinoma. Ann Surg 263(2):292–297

    Article  PubMed  PubMed Central  Google Scholar 

  11. McShane LM, Altman DG, Sauerbrei W et al (2005) Reporting recommendations for tumour MARKer prognostic studies (REMARK). Br J Cancer 93(4):387–391

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Edgren G, Reilly M, Hjalgrim H et al (2008) Donation frequency, iron loss, and risk of cancer among blood donors. J Natl Cancer Inst 100(8):572–579

    Article  PubMed  Google Scholar 

  13. Klaus A, Birchmeier W (2008) Wnt signalling and its impact on development and cancer. Nat Rev Cancer 8(5):387–398

    Article  PubMed  CAS  Google Scholar 

  14. Daniels TR, Bernabeu E, Rodriguez JA et al (2012) The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochem Biophys Acta 1820(3):291–317

    Article  PubMed  CAS  Google Scholar 

  15. Wu T, Sempos CT, Freudenheim JL et al (2004) Serum iron, copper and zinc concentrations and risk of cancer mortality in US adults. Ann Epidemiol 14(3):195–201

    Article  PubMed  Google Scholar 

  16. Gromashevskaia LL, Kasatkina MG, Radzevich IM et al (1980) [Enzymatic activity in the blood serum in mixed viral hepatitis]. Vrachebnoe Delo (7):112–115

  17. James MW, Chen CM, Goddard WP et al (2005) Risk factors for gastrointestinal malignancy in patients with iron-deficiency anaemia. Eur J Gastroenterol Hepatol 17(11):1197–1203

    Article  PubMed  Google Scholar 

  18. Elmi M, Mahar A, Kagedan D et al (2016) The impact of blood transfusion on perioperative outcomes following gastric cancer resection: an analysis of the American College of Surgeons National Surgical Quality Improvement Program database. Can J Surg 59(5):322–329

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kanda M, Kobayashi D, Tanaka C et al (2016) Adverse prognostic impact of perioperative allogeneic transfusion on patients with stage II/III gastric cancer. Gastric Cancer 19(1):255–263

    Article  PubMed  CAS  Google Scholar 

  20. Wu G, Zhang DY, Duan YH et al (2017) Correlations of hemoglobin level and perioperative blood transfusion with the prognosis of gastric cancer: a retrospective study. Med Sci Monit 23:2470–2478

    Article  PubMed  PubMed Central  Google Scholar 

  21. Squires MH 3rd, Kooby DA, Poultsides GA et al (2015) Effect of perioperative transfusion on recurrence and survival after gastric cancer resection: a 7-institution analysis of 765 patients from the US gastric cancer collaborative. J Am Coll Surg 221(3):767–777

    Article  PubMed  Google Scholar 

  22. Froessler B, Palm P, Weber I et al (2016) The important role for intravenous iron in perioperative patient blood management in major abdominal surgery: a randomized controlled trial. Ann Surg 264(1):41–46

    Article  PubMed  PubMed Central  Google Scholar 

  23. Lee JH, Hyung WJ, Kim HI et al (2013) Method of reconstruction governs iron metabolism after gastrectomy for patients with gastric cancer. Ann Surg 258(6):964–969

    Article  PubMed  Google Scholar 

  24. Jeong O, Park YK (2014) Effect of intravenous iron supplementation for acute postoperative anemia in patients undergoing gastrectomy for gastric carcinoma: a pilot study. Ann Surg Oncol 21(2):547–552

    Article  PubMed  Google Scholar 

  25. Lopez A, Cacoub P, Macdougall IC et al (2016) Iron deficiency anaemia. Lancet 387(10021):907–916

    Article  PubMed  CAS  Google Scholar 

  26. Urabe M, Yamashita H, Watanabe T et al (2018) Comparison of prognostic abilities among preoperative laboratory data indices in patients with resectable gastric and esophagogastric junction adenocarcinoma. World J Surg 42(1):185–194

    Article  PubMed  Google Scholar 

  27. Kuroda D, Sawayama H, Kurashige J et al (2018) Controlling Nutritional Status (CONUT) score is a prognostic marker for gastric cancer patients after curative resection. Gastric Cancer 21(2):204–212

    Article  PubMed  Google Scholar 

  28. Kong F, Gao F, Chen J et al (2016) Elevated serum C-reactive protein level predicts a poor prognosis for recurrent gastric cancer. Oncotarget 7(34):55765–55770

    PubMed  PubMed Central  Google Scholar 

  29. Song GM, Liu XL, Bian W et al (2017) Systematic review with network meta-analysis: comparative efficacy of different enteral immunonutrition formulas in patients underwent gastrectomy. Oncotarget 8(14):23376–23388

    Article  PubMed  PubMed Central  Google Scholar 

  30. Ida S, Hiki N, Cho H et al (2017) Randomized clinical trial comparing standard diet with perioperative oral immunonutrition in total gastrectomy for gastric cancer. Br J Surg 104(4):377–383

    Article  PubMed  CAS  Google Scholar 

  31. Fujitani K, Tsujinaka T, Fujita J et al (2012) Prospective randomized trial of preoperative enteral immunonutrition followed by elective total gastrectomy for gastric cancer. Br J Surg 99(5):621–629

    Article  PubMed  CAS  Google Scholar 

  32. Marano L, Porfidia R, Pezzella M et al (2013) Clinical and immunological impact of early postoperative enteral immunonutrition after total gastrectomy in gastric cancer patients: a prospective randomized study. Ann Surg Oncol 20(21):3912–3918

    Article  PubMed  Google Scholar 

  33. Okamoto Y, Okano K, Izuishi K et al (2009) Attenuation of the systemic inflammatory response and infectious complications after gastrectomy with preoperative oral arginine and omega-3 fatty acids supplemented immunonutrition. World J Surg 33(9):1815–1821

    Article  PubMed  Google Scholar 

  34. Mocellin MC, Fernandes R, Chagas TR et al (2017) A meta-analysis of n-3 polyunsaturated fatty acids effects on circulating acute-phase protein and cytokines in gastric cancer. Clin Nutr. https://doi.org/10.1016/j.clnu.2017.05.008

Download references

Acknowledgements

We thank Marla Brunker, from Edanz Group (www.edanzediting.com/ac) for editing a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hideo Baba.

Ethics declarations

Conflict of interest

No author has any conflict of interest.

Ethical standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. All patients gave informed consent for being included in the study.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sawayama, H., Iwatsuki, M., Kuroda, D. et al. Total iron-binding capacity is a novel prognostic marker after curative gastrectomy for gastric cancer. Int J Clin Oncol 23, 671–680 (2018). https://doi.org/10.1007/s10147-018-1274-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-018-1274-7

Keywords

Navigation