Skip to main content
Log in

Monitoring the estimated glomerular filtration rate (eGFR) in patients with small-cell lung cancer during chemotherapy: equations based on serum creatinine or cystatin C?

  • Original Article
  • Published:
International Journal of Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

This study compared the differences between the estimated glomerular filtration rate (eGFR) calculated by several equations based on serum creatinine (Scr) and cystatin C (CysC) concentrations for monitoring renal function in patients with small-cell lung cancer (SCLC) during chemotherapy.

Methods

Seventy-one patients with SCLC were retrospectively analyzed. The eGFR before and after each chemotherapy cycle was calculated by the following equations: the chronic kidney disease epidemiology collaboration (CKD-EPI) equation, the modification of diet in renal disease (MDRD) equation, the Cockcroft–Gault (CG) equation, and five CysC-based equations. The patients were compared among the different eGFR groups.

Results

The mean decreases in eGFRCKD-EPI (−2.25 ± 9.89 ml/min/1.73 m2) between each treatment cycle were more significant than the decreases in eGFRCG (−0.46 ± 10.17 ml/min/1.73 m2), eGFRMDRD (−0.48 ± 9.79 ml/min/1.73 m2), and five calculated eGFRCysC (p < 0.05). Single-/multiparameter analyses showed that patients with a higher body mass index (BMI >23) and receiving more treatment cycles (>3) were at increased risk for developing renal impairment with an eGFR less than 60 ml/min/1.73 m2 during chemotherapy.

Conclusions

The eGFR calculated by the CKD-EPI equation changed more significantly between each chemotherapy cycle than did the eGFR from the other equations based on Scr or CysC in patients with SCLC. Oncologists should pay more attention to the renal function of specific patient groups during treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. NCCN clinical practice guidelines in oncology (2017) Small Cell Lung Cancer, www.nccn.org

  2. Kapoor M, Chan GZ (2001) Malignancy and renal disease. Crit Care Clin 17:571–598

    Article  CAS  PubMed  Google Scholar 

  3. da Silva J, Mesler D (2001) Acute renal failure as a result of malignancy. In: Molitoris B, Finn W (eds) Acute renal failure: a companion to Brenner and Rector’s The Kidney. Harcourt, Indianapolis, pp 312–321

    Google Scholar 

  4. Cockcroft DW, Gault MH (1976) Prediction of creatinine clearance from serum creatinine. Nephron 16:31–41

    Article  CAS  PubMed  Google Scholar 

  5. Levey AS, Bosch JP, Lewis JB et al (1999) A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 130:461–470

    Article  CAS  PubMed  Google Scholar 

  6. Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612

    Article  PubMed  PubMed Central  Google Scholar 

  7. Michels WM, Grootendorst DC, Verduijn M et al (2010) Performance of the Cockcroft–Gault, MDRD, and new CKD-EPI equations in relation to GFR, age, and body size. Clin J Am Soc Nephrol 5:1003–1009

    Article  PubMed  PubMed Central  Google Scholar 

  8. Abrahamson M, Olafsson I, Palsdottir A et al (1990) Structure and expression of the human cystatin C gene. Biochem J 268:287–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chew JSC, Saleem M, Florkowski CM et al (2008) Cystatin C: a paradigm of evidence-based laboratory medicine. Clin Biochem Rev 29:47–62

    PubMed  PubMed Central  Google Scholar 

  10. Stabuc B, Vrhovec L, Stabuc-Silih M et al (2000) Improved prediction of decreased creatinine clearance by serum cystatin C: use in cancer patients before and during chemotherapy. Clin Chem 46:193–197

    CAS  PubMed  Google Scholar 

  11. Thomas F, Seronie-Vivien S, Gladieff L et al (2005) Cystatin C as a new covariate to predict renal elimination of drugs: application to carboplatin. Clin Pharmacokinet 44:1305–1316

    Article  CAS  PubMed  Google Scholar 

  12. Benohr P, Grenz A, Hartmann JT et al (2006) Cystatin C: a marker for assessment of the glomerular filtration rate in patients with cisplatin chemotherapy. Kidney Blood Press Res 29:32–35

    Article  CAS  PubMed  Google Scholar 

  13. Satariano WA, Ragland DR (1994) The effect of comorbidity on 3-year survival of women with primary breast cancer. Ann Intern Med 120:104–110

    Article  CAS  PubMed  Google Scholar 

  14. Cobas® 8000 modular analyzer series: Roche Corporation (2017). https://www.roche.de/diagnostics/systeme/klinische-chemie-immundiagnostik/cobas-8000-modular-analyzer-series.html#Ihre-Vorteile-auf-einen-Blick. Accessed 03 Nov 2017

  15. Tan GD, Lewis AV, James TJ et al (2002) Clinical usefulness of cystatin C for the estimation of glomerular filtration rate in type 1 diabetes: reproducibility and accuracy compared with standard measures and iohexol clearance. Diabetes Care 25:2004–2009

    Article  CAS  PubMed  Google Scholar 

  16. Larsson A, Malm J, Grubb A et al (2004) Calculation of glomerular filtration rate expressed in mL/min from plasma cystatin C values in mg/L. Scand J Clin Lab Invest 64:25–30

    Article  CAS  PubMed  Google Scholar 

  17. Grubb A, Björk J, Lindström V et al (2005) A cystatin C-based equation without anthropometric variables estimates glomerular filtration rate better than creatinine clearance using the Cockcroft–Gault equation. Scand J Clin Lab Invest 65:153–162

    Article  CAS  PubMed  Google Scholar 

  18. Grubb A, Nyman U, Björk J et al (2005) Simple cystatin C-based prediction equations for glomerular filtration rate compared with the Modification of Diet in Renal Disease prediction equation for adults and the Schwartz and the Counahan–Barratt prediction equations for children. Clin Chem 51:1420–1431

    Article  CAS  PubMed  Google Scholar 

  19. Sjöström P, Tidman M, Jones I (2005) Determination of the production rate and non-renal clearance of cystatin C and estimation of the glomerular filtration rate from the serum concentration of cystatin C in humans. Scand J Clin Lab Invest 65:111–124

    Article  PubMed  Google Scholar 

  20. Levey AS, Coresh J, Greene T et al (2006) Chronic Kidney Disease Epidemiology Collaboration: using standardized serum creatinine values in the modification of diet in renal disease study equation for estimating glomerular filtration rate. Ann Intern Med 145:247–254

    Article  CAS  PubMed  Google Scholar 

  21. Stevens LA, Coresh J, Feldman HI et al (2007) Evaluation of the modification of diet in renal disease study equation in a large diverse population. J Am Soc Nephrol 18:2749–2757

    Article  PubMed  Google Scholar 

  22. Wong TY, Tai ES (2009) The CKD-EPI equation and MDRD study equation find similar prevalence of chronic kidney disease in Asian populations. Ann Intern Med 151:892–893

    Article  PubMed  Google Scholar 

  23. Lustgarten JA, Wenk RE (1972) Simple, rapid, kinetic method for serum creatinine measurement. Clin Chem 18:1419–1422

    CAS  PubMed  Google Scholar 

  24. Poggio ED, Wang XL, Greene T et al (2005) Performance of the modification of diet in renal disease and Cockcroft–Gault equations in the estimation of GFR in health and in chronic kidney disease. J Am Soc Nephrol 16:459–466

    Article  PubMed  Google Scholar 

  25. Mojiminiyi OA, Marouf R, Abdella N et al (2002) Serum concentration of cystatin C is not affected by cellular proliferation in patients with proliferative haematological disorders. Ann Clin Biochem 39:308–310

    Article  CAS  PubMed  Google Scholar 

  26. Bárdi E, Bobok I, Oláh AV et al (2004) Cystatin C is a suitable marker of glomerular function in children with cancer. Pediatr Nephrol 19:1145–1147

    Article  PubMed  Google Scholar 

  27. Sokol JP, Schiemann WP (2004) Cystatin C antagonizes transforming growth factor β signaling in normal and cancer cells. Mol Cancer Res 2:183–195

    CAS  PubMed  Google Scholar 

  28. Sun Q (1989) Growth stimulation of 3T3 fibroblasts by cystatin. Exp Cell Res 180:150–160

    Article  CAS  PubMed  Google Scholar 

  29. Tavera C, Leung-Tack J, Prevot D et al (1992) Cystatin C secretion by rat glomerular mesangial cells: autocrine loop for in vitro growth-promoting activity. Biochem Biophys Res Commun 182:1082–1088

    Article  CAS  PubMed  Google Scholar 

  30. Cox JL, Sexton PS, Green TJ et al (1999) Inhibition of B16 melanoma metastasis by overexpression of the cysteine proteinase inhibitor cystatin C. Melanoma Res 9:369–374

    Article  CAS  PubMed  Google Scholar 

  31. Ervin H, Cox JL (2005) Late stage inhibition of hematogenous melanoma metastasis by cystatin C over-expression. Cancer Cell Int 5:14

    Article  PubMed  PubMed Central  Google Scholar 

  32. Kos J, Stabuc B, Cimerman N et al (1998) Serum cystatin C, a new marker of glomerular filtration rate, is increased during malignant progression. Clin Chem 44:2556–2557

    CAS  PubMed  Google Scholar 

  33. Naumnik W, Niklinska W, Ossolinska M et al (2009) Serum cathepsin K and cystatin C concentration in patients with advanced non-small-cell lung cancer during chemotherapy. Folia Histochem Cytobiol 47:207–213

    Article  CAS  PubMed  Google Scholar 

  34. Strojan P, Svetic B, Smid L et al (2004) Serum cystatin C in patients with head and neck carcinoma. Clin Chim Acta 344:155–161

    Article  CAS  PubMed  Google Scholar 

  35. Mussap M, Plebani M (2004) Biochemistry and clinical role of human cystatin C. Crit Rev Clin Lab Sci 41:467–550

    Article  CAS  PubMed  Google Scholar 

  36. Poole SG, Dooley MJ, Rischin D (2002) A comparison of bedside renal function estimates and measured glomerular filtration rate (TC99m-DTPA clearance) in cancer patients. Ann Oncol 13:949–955

    Article  CAS  PubMed  Google Scholar 

  37. Wright JG, Boddy AV, Highly M et al (2001) Estimation of glomerular filtration rate in cancer patients. Br J Cancer 84:452–459

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

XT (Xue Tian) and XXZ drafted the manuscript and performed data analysis. JZ, ZYD, XJZ, MY, MD, and XT contributed to the design of the study and collection of data. YL, LR, FP, YX, MJH, JW, YSW, and ZL worked on data collection and critical revision of the manuscript; YLG provided the concept of this study, drafted the manuscript, and gave the final approval of the version to be published. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Youling Gong.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tian, X., Zhang, X., Yu, M. et al. Monitoring the estimated glomerular filtration rate (eGFR) in patients with small-cell lung cancer during chemotherapy: equations based on serum creatinine or cystatin C?. Int J Clin Oncol 23, 258–265 (2018). https://doi.org/10.1007/s10147-017-1206-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10147-017-1206-y

Keywords

Navigation