High Mib-1-score correlates with new cranial nerve deficits after surgery for frontal skull base meningioma


Postoperative new cranial nerve deficits comprise severe concomitant morbidity in skull base meningioma surgery. Therefore, long-term cranial nerve integrity represents an important outcome measure. In the current study, we analyzed our institutional database in order to identify risk factors for postoperative new cranial nerve morbidity in the course of frontobasal meningioma surgery. Between 2009 and 2017, 195 patients were surgically treated for frontobasal meningioma at the authors’ institution. Postoperative cranial nerve function was assessed immediately after surgery as well as 12 months postoperatively. A univariate and multivariate analysis was performed to identify factors influencing favorable postoperative cranial nerve outcome. Tumors with histological Mib-1-labeling indices > 5% were associated with a significantly higher percentage of new cranial nerve deficits immediately after surgery compared with those with Mib-1-labeling indices ≤ 5% (39% versus 20%, p = 0.029). Elevated Mib-1-labeling indices could be correlated with high CD68-positive macrophage staining (54% for Mib-1 index > 5% versus 19% for Mib-1 index ≤ 5%, p = 0.001). Elevated Mib-1-labeling index correlates with initial new cranial nerve dysfunction after resection of frontal skull base meningioma. With regard to elevated CD68-positive macrophage staining in high Mib-1-positive meningiomas, initial postoperative new cranial nerve morbidity might partly reflect macrophage-based inflammatory immune responses.

This is a preview of subscription content, access via your institution.

Fig. 1


  1. 1.

    Whittle IR, Smith C, Navoo P, Collie D (2004) Meningiomas. Lancet 363(9420):1535–1543. https://doi.org/10.1016/S0140-6736(04)16153-9

    Article  PubMed  Google Scholar 

  2. 2.

    Topsakal C, Al-Mefty O, Bulsara KR, Williford VS (2008) Intraoperative monitoring of lower cranial nerves in skull base surgery: technical report and review of 123 monitored cases. Neurosurg Rev 31(1):45–53. https://doi.org/10.1007/s10143-007-0105-5

    Article  PubMed  Google Scholar 

  3. 3.

    Bassiouni H, Asgari S, Sandalcioglu IE, Seifert V, Stolke D, Marquardt G (2009) Anterior clinoidal meningiomas: functional outcome after microsurgical resection in a consecutive series of 106 patients. Clinical article. J Neurosurg 111(5):1078–1090. https://doi.org/10.3171/2009.3.17685

    Article  PubMed  Google Scholar 

  4. 4.

    Turgut M, Ozcan OE, Benli K, Ozgen T, Gurcay O, Bertan V, Erbengi A, Saglam S (1996) Factors affecting morbidity and mortality following surgical intervention in patients with intracranial meningioma. Aust N Z J Surg 66(3):144–150. https://doi.org/10.1111/j.1445-2197.1996.tb01143.x

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Schneider M, Schuss P, Guresir A, Wach J, Hamed M, Vatter H, Guresir E (2019) Cranial nerve outcomes after surgery for frontal skull base meningiomas: the eternal quest of the maximum-safe resection with the lowest morbidity. World Neurosurg. https://doi.org/10.1016/j.wneu.2019.01.171

  6. 6.

    Hye RJ, Mackey A, Hill MD, Voeks JH, Cohen DJ, Wang K, Tom M, Brott TG (2015) Incidence, outcomes, and effect on quality of life of cranial nerve injury in the Carotid Revascularization Endarterectomy versus Stenting Trial. J Vasc Surg 61(5):1208–1214. https://doi.org/10.1016/j.jvs.2014.12.039

    Article  PubMed  PubMed Central  Google Scholar 

  7. 7.

    Chen CM, Huang AP, Kuo LT, Tu YK (2011) Contemporary surgical outcome for skull base meningiomas. Neurosurg Rev 34(3):281–296; discussion 296. https://doi.org/10.1007/s10143-011-0321-x

    Article  PubMed  Google Scholar 

  8. 8.

    Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D, Cavenee WK, Ohgaki H, Wiestler OD, Kleihues P, Ellison DW (2016) The 2016 World Health Organization classification of tumors of the central nervous system: a summary. Acta Neuropathol 131(6):803–820. https://doi.org/10.1007/s00401-016-1545-1

    Article  PubMed  Google Scholar 

  9. 9.

    Majores M, Schick V, Engels G, Fassunke J, Elger CE, Schramm J, Blumcke I, Becker AJ (2005) Mutational and immunohistochemical analysis of ezrin-, radixin-, moesin (ERM) molecules in epilepsy-associated glioneuronal lesions. Acta Neuropathol 110(6):537–546. https://doi.org/10.1007/s00401-005-1088-3

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Majores M, von Lehe M, Fassunke J, Schramm J, Becker AJ, Simon M (2008) Tumor recurrence and malignant progression of gangliogliomas. Cancer 113(12):3355–3363. https://doi.org/10.1002/cncr.23965

    Article  PubMed  Google Scholar 

  11. 11.

    Neil-Dwyer G, Lang DA, Davis A (2000) Outcome from complex neurosurgery: an evidence based approach. Acta Neurochir 142(4):367–371

    CAS  Article  Google Scholar 

  12. 12.

    Okada M, Miyake K, Matsumoto Y, Kawai N, Kunishio K, Nagao S (2004) Matrix metalloproteinase-2 and matrix metalloproteinase-9 expressions correlate with the recurrence of intracranial meningiomas. J Neuro-Oncol 66(1–2):29–37

    Article  Google Scholar 

  13. 13.

    Perry A, Stafford SL, Scheithauer BW, Suman VJ, Lohse CM (1998) The prognostic significance of MIB-1, p53, and DNA flow cytometry in completely resected primary meningiomas. Cancer 82(11):2262–2269

    CAS  Article  Google Scholar 

  14. 14.

    Takahashi JA, Ueba T, Hashimoto N, Nakashima Y, Katsuki N (2004) The combination of mitotic and Ki-67 indices as a useful method for predicting short-term recurrence of meningiomas. Surg Neurol 61(2):149–155 discussion 155-146

    Article  Google Scholar 

  15. 15.

    Maiuri F, De Caro MB, Esposito F, Cappabianca P, Strazzullo V, Pettinato G, de Divitiis E (2007) Recurrences of meningiomas: predictive value of pathological features and hormonal and growth factors. J Neuro-Oncol 82(1):63–68. https://doi.org/10.1007/s11060-005-9078-9

    Article  Google Scholar 

  16. 16.

    Vankalakunti M, Vasishta RK, Das Radotra B, Khosla VK (2007) MIB-1 immunolabeling: a valuable marker in prediction of benign recurring meningiomas. Neuropathology 27(5):407–412

    Article  Google Scholar 

  17. 17.

    Zandian A, Osiro S, Hudson R, Ali IM, Matusz P, Tubbs SR, Loukas M (2014) The neurologist’s dilemma: a comprehensive clinical review of Bell’s palsy, with emphasis on current management trends. Med Sci Monit 20:83–90. https://doi.org/10.12659/MSM.889876

    Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Ciorba A, Corazzi V, Conz V, Bianchini C, Aimoni C (2015) Facial nerve paralysis in children. World J Clin Cases 3(12):973–979. https://doi.org/10.12998/wjcc.v3.i12.973

    Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Biebl A, Lechner E, Hroncek K, Preisinger A, Eisenkolbl A, Schmitt K, Furthner D (2013) Facial nerve paralysis in children: is it as benign as supposed? Pediatr Neurol 49(3):178–181. https://doi.org/10.1016/j.pediatrneurol.2013.03.013

    Article  PubMed  Google Scholar 

  20. 20.

    Cattoretti G, Becker MH, Key G, Duchrow M, Schluter C, Galle J, Gerdes J (1992) Monoclonal antibodies against recombinant parts of the Ki-67 antigen (MIB 1 and MIB 3) detect proliferating cells in microwave-processed formalin-fixed paraffin sections. J Pathol 168(4):357–363. https://doi.org/10.1002/path.1711680404

    CAS  Article  PubMed  Google Scholar 

  21. 21.

    Strik HM, Stoll M, Meyermann R (2004) Immune cell infiltration of intrinsic and metastatic intracranial tumours. Anticancer Res 24(1):37–42

    PubMed  Google Scholar 

  22. 22.

    Rossi ML, Cruz Sanchez F, Hughes JT, Esiri MM, Coakham HB (1988) Immunocytochemical study of the cellular immune response in meningiomas. J Clin Pathol 41(3):314–319

    CAS  Article  Google Scholar 

  23. 23.

    Lewis D, Roncaroli F, Agushi E, Mosses D, Williams R, Li KL, Zhu X, Hinz R, Atkinson R, Wadeson A, Hulme S, Mayers H, Stapleton E, Lloyd SKL, Freeman SR, Rutherford SA, Hammerbeck-Ward C, Evans DG, Pathmanaban O, Jackson A, King AT, Coope D (2018) Inflammation and vascular permeability correlate with growth in sporadic vestibular schwannoma. Neuro-Oncology. https://doi.org/10.1093/neuonc/noy177

  24. 24.

    Korshunov A, Shishkina L, Golanov A (2003) Immunohistochemical analysis of p16INK4a, p14ARF, p18INK4c, p21CIP1, p27KIP1 and p73 expression in 271 meningiomas correlation with tumor grade and clinical outcome. Int J Cancer 104(6):728–734. https://doi.org/10.1002/ijc.11013

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Roser F, Samii M, Ostertag H, Bellinzona M (2004) The Ki-67 proliferation antigen in meningiomas. Experience in 600 cases. Acta Neurochir 146(1):37–44; discussion 44. https://doi.org/10.1007/s00701-003-0173-4

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Shimada S, Ishizawa K, Hirose T (2005) Expression of E-cadherin and catenins in meningioma: ubiquitous expression and its irrelevance to malignancy. Pathol Int 55(1):1–7. https://doi.org/10.1111/j.1440-1827.2005.01786.x

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Moradi A, Semnani V, Djam H, Tajodini A, Zali AR, Ghaemi K, Nikzad N, Madani-Civi M (2008) Pathodiagnostic parameters for meningioma grading. J Clin Neurosci 15(12):1370–1375. https://doi.org/10.1016/j.jocn.2007.12.005

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Morimura T, Kitz K, Budka H (1989) In situ analysis of cell kinetics in human brain tumors. A comparative immunocytochemical study of S phase cells by a new in vitro bromodeoxyuridine-labeling technique, and of proliferating pool cells by monoclonal antibody Ki-67. Acta Neuropathol 77(3):276–282

    CAS  Article  Google Scholar 

  29. 29.

    Prayson RA (2005) The utility of MIB-1/Ki-67 immunostaining in the evaluation of central nervous system neoplasms. Adv Anat Pathol 12(3):144–148

    Article  Google Scholar 

  30. 30.

    Abry E, Thomassen IO, Salvesen OO, Torp SH (2010) The significance of Ki-67/MIB-1 labeling index in human meningiomas: a literature study. Pathol Res Pract 206(12):810–815. https://doi.org/10.1016/j.prp.2010.09.002

    CAS  Article  PubMed  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Matthias Schneider.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

The present study was approved by the local ethics committee of the University of Bonn.

Informed consent

Informed consent was not sought as a retrospective design was used.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material


(DOCX 18 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Schneider, M., Borger, V., Güresir, Á. et al. High Mib-1-score correlates with new cranial nerve deficits after surgery for frontal skull base meningioma. Neurosurg Rev 44, 381–387 (2021). https://doi.org/10.1007/s10143-019-01222-0

Download citation


  • Meninigioma
  • Postoperative new cranial nerve deficits
  • Mib-1-index