Unveiling the tale of the tail: an illustration of spinal dysraphisms

Abstract

Spinal dysraphism is an umbrella term describing herniation of meninges or neural elements through defective neural arch. They can be broadly categorized into open and closed types. MRI is the investigation of choice to study neural abnormalities and to assess the severity of hydrocephalus and Chiari malformation. Knowledge of the embryology of these disorders is valuable in correctly identifying the type of dysraphism. The aim of surgery is untethering and dural reconstruction. Accurate depiction of the abnormal anatomy in cases of spinal dysraphism is of utmost importance for surgical management of these patients. MRI makes this possible due to its excellent soft tissue contrast resolution and multiplanar capability, allowing the radiologist to evaluate the intricate details in small pediatric spinal structures. Imaging enlightens the surgeons about the status of spinal cord and other associated abnormalities and helps detect re-tethering in operated cases. Besides, antenatal surgery to repair myelomeningoceles has made detection of open dysraphisms on fetal MRI and antenatal ultrasound critical. The purpose of this review is to describe the development of spine, illustrate the myriad imaging features of open and closed spinal dysraphisms, and enlist the reporting points the operating surgeon seeks from the radiologist.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

References

  1. 1.

    Altman NR, Altman DH (1987) MR imaging of spinal dysraphism. Am J Neuroradiol 8:533–538

    CAS  PubMed  Google Scholar 

  2. 2.

    Kaplan K, Spivak J, Bendo J (2005) Embryology of the spine and associated congenital abnormalities. Spine J 5(5):564–576

    PubMed  Article  Google Scholar 

  3. 3.

    Asma B, Dib O, Chahinez H, Seddiki K, El Montassir O, Nacereddine B (2017) Imaging findings in spinal dysraphisms. https://doi.org/10.1594/ecr2017/C-1516

    Google Scholar 

  4. 4.

    Chang C, Wong T, Huang B, Chan R, Yang T (2008) Spinal dysraphism: a cross-sectional and retrospective multidisciplinary clinic-based study. J Chin Med Assoc 71(10):502–508. https://doi.org/10.1016/s1726-4901(08)70158-8

    Article  PubMed  Google Scholar 

  5. 5.

    Simon E, Pollock A (2004) Prenatal and postnatal imaging of spinal dysraphism. Semin Roentgenol 39(2):182–196. https://doi.org/10.1053/j.ro.2003.12.004

    Article  PubMed  Google Scholar 

  6. 6.

    Adzick N (2010) Fetal myelomeningocele: natural history, pathophysiology, and in-utero intervention. Semin Fetal Neonatal Med 15(1):9–14. https://doi.org/10.1016/j.siny.2009.05.002

    Article  PubMed  Google Scholar 

  7. 7.

    Rufener SL, Ibrahim M, Raybaud CA, Parmar HA (2010) Congenital spine and spinal cord malformations—pictorial review. Am J Roentgenol 194:26–37

    Article  Google Scholar 

  8. 8.

    Alzahrani A, Alsowayan O, Farmer J, Capolicchio J, Jednak R, El-Sherbiny M (2016) Comprehensive analysis of the clinical and urodynamic outcomes of secondary tethered spinal cord before and after spinal cord untethering. Journal of Pediatric Urology 12(2):101.e1–101.e6. https://doi.org/10.1016/j.jpurol.2015.08.011

    Article  Google Scholar 

  9. 9.

    Findler G (1991) The embryological aspects of spinal dysraphism. Neurocirugía 2(3):170–174. https://doi.org/10.1016/s1130-1473(91)71139-1

    Article  Google Scholar 

  10. 10.

    Alvarado E, Leach J, Caré M, Mangano F, O'Hara S (2017) Pediatric spinal ultrasound: neonatal and intraoperative applications. Semin Ultrasound CT MR I38:126–142

    Article  Google Scholar 

  11. 11.

    Tortori-Donati P, Rossi A, Cama A (2000) Spinal dysraphism: a review of neuroradiological features with embryological correlations and proposal for a new classification. Neuroradiology 42:471–491

    CAS  PubMed  Article  Google Scholar 

  12. 12.

    Thawait G, Chhabra A, Carrino J (2012) Spine segmentation and enumeration and normal variants. Radiol Clin N Am 50(4):587–598. https://doi.org/10.1016/j.rcl.2012.04.003

    Article  PubMed  Google Scholar 

  13. 13.

    Tortori-Donati P, Rossi A, Biancheri R, Cama A (2005) Congenital malformations of the spine and spinal cord. In: Pediatric neuroradiology. Springer, Berlin, Heidelberg, pp 1551–1608

    Google Scholar 

  14. 14.

    Boue A, Boue J, Gropp A (1985) Cytogenetics of pregnancy wastage. Adv Hum Genet 14:1–57

    CAS  PubMed  Google Scholar 

  15. 15.

    McFadden DE, Kalousek DK (1989) Survey of neural tube defects in spontaneously aborted embryos. Am J Med Genet 32:356–358

    CAS  PubMed  Article  Google Scholar 

  16. 16.

    Copp A, Stanier P, Greene N (2017) Genetic basis of neural tube defects. In: Textbook of pediatric neurosurgery. Springer, Berlin, Heidelberg, pp 1–28. https://doi.org/10.1007/978-3-319-31512-6_105-1

    Google Scholar 

  17. 17.

    Wyszynski DF, Nambisan M, Surve T, Alsdorf RM, Smith CR, Holmes LB (2005) Increased rate of major malformations in offspring exposed to valproate during pregnancy. Neurology 64:961–965

    CAS  PubMed  Article  Google Scholar 

  18. 18.

    Chen CP (2007b) Chromosomal abnormalities associated with neural tube defects (II): partial aneuploidy. Taiwan J Obstet gynecol 46:336–351

    PubMed  Article  Google Scholar 

  19. 19.

    Abdul-Aziz NM, Turmaine M, Greene ND, Copp AJ (2009) Ephrin A-ephA receptor interactions in mouse spinal neurulation: implications for neural fold fusion. Int J Dev Biol 53:559–568

    CAS  PubMed  Article  Google Scholar 

  20. 20.

    Dunlevy LPE, Chitty LS, Doudney K et al (2007) Abnormal folate metabolism in foetuses affected by neural tube defects. Brain 130:1043–1049

    PubMed  Article  Google Scholar 

  21. 21.

    Etheredge AJ, Finnell RH, Carmichael SL, Lammer EJ, Zhu H, Mitchell LE, Shaw GM (2012) Maternal and infant gene-folate interactions and the risk of neural tube defects. Am J Med Genet A 158A:2439–2446

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  22. 22.

    Barkovich AJ (2011) Pediatric neuroradiology, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 857–916

    Google Scholar 

  23. 23.

    Naidich TP, Blaser SI, Delman BN (2009) Congenital anomalies of the spine and spinal cord: embryology and malformations. In: Atlas SW (ed) Magnetic resonance imaging of the brain and spine, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1364–1447

    Google Scholar 

  24. 24.

    Warder DE (2001) Tethered cord syndrome and occult spinal dysraphism. Neurosurg Focus 10:1–9

    Article  Google Scholar 

  25. 25.

    Robinson A, Russell S, Rimmer S (2005) The value of ultrasonic examination of the lumbar spine in infants with specific reference to cutaneous markers of occult spinal dysraphism. Clin Radiol 60(1):72–77. https://doi.org/10.1016/j.crad.2004.06.004

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Hervey-Jumper S, Garton H, Wetjen N, Maher C (2011) Neurosurgical management of congenital malformations and inherited disease of the spine. Neuroimaging Clin N Am 21(3):719–731. https://doi.org/10.1016/j.nic.2011.05.009

    Article  PubMed  Google Scholar 

  27. 27.

    Grimme J, Castillo M (2007) Congenital anomalies of the spine. Neuroimaging Clin N Am 17(1):1–16. https://doi.org/10.1016/j.nic.2006.11.002

    Article  PubMed  Google Scholar 

  28. 28.

    Thompson D (2010) Spinal dysraphic anomalies; classification, presentation and management. Paediatr Child Health 20(9):397–403. https://doi.org/10.1016/j.paed.2010.03.011

    Article  Google Scholar 

  29. 29.

    Kumar J, Afsal M, Garg A (2017) Imaging spectrum of spinal dysraphism on magnetic resonance: a pictorial review. World J Radiol 9(4):178–190

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30.

    Venkataramana NK (2011) Spinal dysraphism. Journal of Paediatric Neurosciences 6:31–40

    Article  Google Scholar 

  31. 31.

    Karagiozov K (2002) Surgical technique in spinal dysraphism—variations on a theme. Int Congr Ser 1247:581–585. https://doi.org/10.1016/s0531-5131(02)01164-0

    Article  Google Scholar 

  32. 32.

    Anderson F (1968) Occult spinal dysraphism. J Pediatr 73(2):163–177. https://doi.org/10.1016/s0022-3476(68)80065-4

    CAS  Article  PubMed  Google Scholar 

  33. 33.

    Steinbok P, MacNeily A, Hengel A, Afshar K, Landgraf J, Hader W, Pugh J (2016) Filum section for urinary incontinence in children with occult tethered cord syndrome: a randomized, controlled pilot study. J Urol 195(4 part 2):1183–1188. https://doi.org/10.1016/j.juro.2015.09.082

    Article  PubMed  Google Scholar 

  34. 34.

    Narang P, Prakash M, Verma AK et al (2015) Spinal dysraphism with fat: MRI slices before the surgeon's cut. https://doi.org/10.1594/ecr2015/C-2446

  35. 35.

    Adzick NS (2013) Fetal surgery for spina bifida: past, present, future. Semin Pediatr Surg 22:10–17

    PubMed  PubMed Central  Article  Google Scholar 

  36. 36.

    Dahlgren R, Baron E, Vaccaro A (2006) Pathophysiology, diagnosis, and treatment of spinal meningoceles and arachnoid cysts. Seminars In Spine Surgery 18(3):148–153. https://doi.org/10.1053/j.semss.2006.06.003

    Article  Google Scholar 

  37. 37.

    Mehta TS, Levine D (2007) Ultrasound and MR imaging of fetal neural tube defects. Ultrasound Clin 2:187–201

    Article  Google Scholar 

  38. 38.

    Yerkes E, Halline C, Yoshiba G, Meyer T, Rosoklija I, Bowman R et al (2017) Lipomyelomeningocele for the urologist: should we view it the same as myelomeningocele? J Pediatr Urol 13(4):371.e1–371.e8. https://doi.org/10.1016/j.jpurol.2017.04.014

    CAS  Article  Google Scholar 

  39. 39.

    Biggio J, Owen J, Wenstrom K, Oakes W (2001) Can prenatal ultrasound findings predict ambulatory status in fetuses with open spina bifida? Am J Obstet Gynecol 185(5):1016–1020. https://doi.org/10.1067/mob.2001.117676

    Article  PubMed  Google Scholar 

  40. 40.

    Beuriat P, Szathmari A, Rousselle C, Sabatier I, Di Rocco F, Mottolese C (2017) Complete reversibility of the Chiari type II malformation after postnatal repair of myelomeningocele. World Neurosurgery 108:62–68. https://doi.org/10.1016/j.wneu.2017.08.152

    Article  PubMed  Google Scholar 

  41. 41.

    Ntimbani J, Kelly A, Lekgwara P (2019) Myelomeningocele—a literature review. Interdisciplinary Neurosurgery 100502. https://doi.org/10.1016/j.inat.2019.100502

  42. 42.

    Johnson D, Pretorius D, Riccabona M, Budorick N, Nelson T (1997) Three-dimensional ultrasound of the fetal spine. Obstet Gynecol 89(3):434–438. https://doi.org/10.1016/s0029-7844(96)00498-x

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Egloff A, Bulas D (2015) Magnetic resonance imaging evaluation of fetal neural tube defects. Semin Ultrasound CT MRI 36:487–500

    Article  Google Scholar 

  44. 44.

    von Koch CS, Glenn OA, Goldstein RB, Barkovich AJ (2005) Fetal magnetic resonance imaging enhances detection of spinal cord anomalies in patients with sonographically detected bony anomalies of the spine. J Ultrasound Med 24:781–789

    Article  Google Scholar 

  45. 45.

    Chao TT, Dashe JS, Adams RC, Keefover-Hicks A, McIntire DD, Twickler DM (2011) Fetal spine findings on MRI and associated outcomes in children with open neural tube defects. Am J Roentgenol 197:956–961

    Article  Google Scholar 

  46. 46.

    Barnes PD, Lester PD, Yamanashi WS, Prince JR (1986) Magnetic resonance imaging in infants and children with spinal dysraphism. Am J Neuroradiol 7:465–472

    Google Scholar 

  47. 47.

    Manganaro L, Bernardo S, Antonelli A, Vinci V, Saldari M, Catalano C (2017) Fetal MRI of the central nervous system: state-of-the-art. Eur J Radiol 93:273–283

    PubMed  Article  Google Scholar 

  48. 48.

    Barnewolt C (2013) Sonography of the spinal canal. Ultrasound Clinics 8(3):477–499. https://doi.org/10.1016/j.cult.2013.04.006

    Article  Google Scholar 

  49. 49.

    Hughes JA, De Bruyn R, Patel K, Thompson D (2003) Evaluation of spinal ultrasound in spinal dysraphism. Clin Radiol 58:227–233

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    Nagaraj U, Bierbrauer K, Stevenson C, Peiro J, Lim F, Zhang B, Kline-Fath B (2018) Spinal imaging findings of open spinal dysraphisms on fetal and postnatal MRI. Am J Neuroradiol 39(10):1947–1952. https://doi.org/10.3174/ajnr.a5760

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Nagaraj U, Bierbrauer K, Peiro J, Kline-Fath B (2016) Differentiating closed versus open spinal dysraphisms on fetal MRI. Am J Roentgenol 207(6):1316–1323. https://doi.org/10.2214/ajr.16.16356

    Article  Google Scholar 

  52. 52.

    Yu J, Sohaey R, Kennedy A, Selden N (2007) Terminal myelocystocele and sacrococcygeal teratoma: a comparison of fetal ultrasound presentation and perinatal risk. Am J Neuroradiol 28(6):1058–1060. https://doi.org/10.3174/ajnr.a0502

    CAS  Article  PubMed  Google Scholar 

  53. 53.

    Huisman TAGM, Rossi A, Tortori-Donati P (2012) MR imaging of neonatal spinal dysraphia: what to consider? Magn Reson Imaging Clin N Am 20:45–61

    PubMed  Article  Google Scholar 

  54. 54.

    Nair N, Sreenivas M, Gupta AK, Kandasamy D, Jana M (2016) Neonatal and infantile spinal sonography: a useful investigation often underutilized. Indian J Radiol Imaging 26:493–501

    PubMed  PubMed Central  Article  Google Scholar 

  55. 55.

    Ladino TMF, Di Pietro MA (2014) Spine ultrasound imaging in the newborn. Semin Ultrasound CT MR 35(6):652–661

    Article  Google Scholar 

  56. 56.

    Alvarado E, Leach J, Caré M, Mangano F, O'Hara S (2017) Pediatric spinal ultrasound: neonatal and intraoperative applications. Semin Ultrasound CT MRI 38:126–142

    Article  Google Scholar 

  57. 57.

    Raghavan N, Barkovich A, Edwards M, Norman D (1989) MR imaging in the tethered spinal cord syndrome. Am J Neuroradiol 152(4):843–852. https://doi.org/10.2214/ajr.152.4.843

    CAS  Article  Google Scholar 

  58. 58.

    Lee S, Cheon J, Choi Y, Kim I, Kim W, Cho H, Lee JY, Wang KC (2016) Limited dorsal myeloschisis and congenital dermal sinus: comparison of clinical and MR imaging features. Am J Neuroradiol 38(1):176–182. https://doi.org/10.3174/ajnr.a4958

    Article  PubMed  Google Scholar 

  59. 59.

    Durand D, Huisman T, Carrino J (2010) MR imaging features of common variant spinal anatomy. Magn Reson Imaging Clin N Am 18(4):717–726. https://doi.org/10.1016/j.mric.2010.09.005

    Article  PubMed  Google Scholar 

  60. 60.

    Naidich TP, McLone DG, Mutluer S (1983) A new understanding of dorsal dysraphism with lipoma (lipomyeloschisis): radiologic evaluation and surgical correction. Am J Roentgenol 140:1065–1078

    CAS  Article  Google Scholar 

  61. 61.

    Wang LL, Bierbrauer KS (2017) Congenital and hereditary diseases of the spinal cord. Semin Ultrasound CT MRI 38:105–125

    Article  Google Scholar 

  62. 62.

    McLone DG, Naidich TP (1985) Terminal myelocystocele. Neurosurgery 16:36–43

    CAS  PubMed  Google Scholar 

  63. 63.

    Rossi A, Piatelli G, Gandolfo C et al (2006) Spectrum of nonterminal myelocystoceles. Neurosurgery 58:509–515

    PubMed  Article  Google Scholar 

  64. 64.

    Kocaoglu M, Frush DP (2006) Pediatric presacral masses. RadioGraphics 26:833–857

    PubMed  Article  Google Scholar 

  65. 65.

    Rufener S, Ibrahim M, Parmar HA (2011) Imaging of congenital spine and spinal cord malformations. Neuroimaging Clin N Am 21:659–676

    PubMed  Article  Google Scholar 

  66. 66.

    Uchino A, Mori T, Ohno M (1991) Thickened fatty filum terminale: MR imaging. Neuroradiology 33:331–333

    CAS  PubMed  Article  Google Scholar 

  67. 67.

    Kanev PM, Park TS (1995) Dermoids and dermal sinus tracts of the spine. Neurosurg Clin N Am 6:359–366

    CAS  PubMed  Article  Google Scholar 

  68. 68.

    Barkovich AJ, Edwards MS, Cogen PH (1991) MR evaluation of spinal dermal sinus tracts in children. Am J Neuroradiol 12:123–129

    CAS  PubMed  Google Scholar 

  69. 69.

    Coleman LT, Zimmerman RA, Rorke LB (1995) Ventriculus terminalis of the conus medullaris: MR findings in children. Am J Neuroradiol 16:1421–1426

    CAS  PubMed  Google Scholar 

  70. 70.

    Dias MS, Walker ML (1992) The embryogenesis of complex dysraphic malformations: a disorder of gastrulation? Pediatr Neurosurg 18:229–253

    CAS  PubMed  Article  Google Scholar 

  71. 71.

    Sreedhar M, Menon S, Varma G, Ghosal N (2006) Cervico-thoracic neurenteric cyst—a case report. Indian J Radiol Imaging 16:99–10

    Article  Google Scholar 

  72. 72.

    Pang D, Dias MS, Ahab-Barmada M (1992) Split cord malformation I. A unified theory of embryogenesis for double spinal cord malformations. Neurosurgery 31:451–480

    CAS  PubMed  Article  Google Scholar 

  73. 73.

    Pang D (1992) Split cord malformation II. Clinical syndrome. Neurosurgery 31:481–500

    CAS  PubMed  Article  Google Scholar 

  74. 74.

    Estin D, Cohen AR (1995) Caudal agenesis and associated caudal spinal cord malformations. Neurosurg Clin N Am 6:377–391

    CAS  PubMed  Article  Google Scholar 

  75. 75.

    Tortori-Donati P, Fondelli MP, Rossi A, Raybaud CA, Cama A, Capra V (1999) Segmental spinal dysgenesis: neuroradiologic findings with clinical and embryologic correlation. Am J Neuroradiol 20:445–456

    CAS  PubMed  Google Scholar 

  76. 76.

    Danzer E, Hubbard AM, Hedrick HL, Johnson MP, Wilson RD, Howell LJ, Flake AW, Adzick NS (2006) Diagnosis and characterization of fetal sacrococcygeal teratoma with prenatal MRI. Am J Roentgenol 187:350–356

    Article  Google Scholar 

Download references

Funding

The work has not received any funding from any source.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Rohini Gupta Ghasi.

Ethics declarations

Conflict of interest

On behalf of all the authors, the corresponding author states that there is no conflict of interest.

Ethical statement

The work was approved by the Ethics Committee of the authors’ institution. Informed consent was obtained from all individual participants (or their guardians where applicable) included in the study. All the illustrations used in this article have been created by the first author of the article, using Adobe Illustrator Draw application. The source of the images is the database of the authors’ institute, as indicated in the title page.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Reghunath, A., Ghasi, R.G. & Aggarwal, A. Unveiling the tale of the tail: an illustration of spinal dysraphisms. Neurosurg Rev 44, 97–114 (2021). https://doi.org/10.1007/s10143-019-01215-z

Download citation

Keywords

  • Spinal dysraphism
  • Open spinal dysraphism
  • Closed spinal dysraphism
  • Magnetic resonance imaging