Skip to main content

Advertisement

Log in

Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review

  • Review
  • Published:
Neurosurgical Review Aims and scope Submit manuscript

Abstract

Machine learning (ML) involves algorithms learning patterns in large, complex datasets to predict and classify. Algorithms include neural networks (NN), logistic regression (LR), and support vector machines (SVM). ML may generate substantial improvements in neurosurgery. This systematic review assessed the current state of neurosurgical ML applications and the performance of algorithms applied. Our systematic search strategy yielded 6866 results, 70 of which met inclusion criteria. Performance statistics analyzed included area under the receiver operating characteristics curve (AUC), accuracy, sensitivity, and specificity. Natural language processing (NLP) was used to model topics across the corpus and to identify keywords within surgical subspecialties. ML applications were heterogeneous. The densest cluster of studies focused on preoperative evaluation, planning, and outcome prediction in spine surgery. The main algorithms applied were NN, LR, and SVM. Input and output features varied widely and were listed to facilitate future research. The accuracy (F(2,19) = 6.56, p < 0.01) and specificity (F(2,16) = 5.57, p < 0.01) of NN, LR, and SVM differed significantly. NN algorithms demonstrated significantly higher accuracy than LR. SVM demonstrated significantly higher specificity than LR. We found no significant difference between NN, LR, and SVM AUC and sensitivity. NLP topic modeling reached maximum coherence at seven topics, which were defined by modeling approach, surgery type, and pathology themes. Keywords captured research foci within surgical domains. ML technology accurately predicts outcomes and facilitates clinical decision-making in neurosurgery. NNs frequently outperformed other algorithms on supervised learning tasks. This study identified gaps in the literature and opportunities for future neurosurgical ML research.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Abouzari M, Rashidi A, Zandi-Toghani M, Behzadi M, Asadollahi M (2009) Chronic subdural hematoma outcome prediction using logistic regression and an artificial neural network. Neurosurg Rev 32:479–484. https://doi.org/10.1007/s10143-009-0215-3

    Article  PubMed  Google Scholar 

  2. Akbari H, Macyszyn L, Da X, Wolf RL, Bilello M, Verma R, O’Rourke DM, Davatzikos C (2014) Pattern analysis of dynamic susceptibility contrast-enhanced MR imaging demonstrates peritumoral tissue heterogeneity. Radiology 273:502–510

    PubMed  Google Scholar 

  3. Akbari H, Macyszyn L, Da X, Bilello M, Wolf RL, Martinez-Lage M, Biros G, Alonso-Basanta M, O’rourke DM, Davatzikos C (2016) Imaging surrogates of infiltration obtained via multiparametric imaging pattern analysis predict subsequent location of recurrence of glioblastoma. Neurosurgery 78:572–580

    PubMed  Google Scholar 

  4. Angeles P, Tai Y, Pavese N, Wilson S, Vaidyanathan R (2017) Automated assessment of symptom severity changes during deep brain stimulation (DBS) therapy for Parkinson’s disease. In: 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, pp 1512–1517

  5. Arle JE, Perrine K, Devinsky O, Doyle WK (1999) Neural network analysis of preoperative variables and outcome in epilepsy surgery. J Neurosurg 90:998–1004. https://doi.org/10.3171/jns.1999.90.6.0998

    Article  CAS  PubMed  Google Scholar 

  6. Armañanzas R, Alonso-Nanclares L, DeFelipe-Oroquieta J, Kastanauskaite A, de Sola RG, DeFelipe J, Bielza C, Larrañaga P (2013) Machine learning approach for the outcome prediction of temporal lobe epilepsy surgery. PLoS One 8:e62819

    PubMed  PubMed Central  Google Scholar 

  7. Asadi H, Kok HK, Looby S, Brennan P, O’Hare A, Thornton J (2016) Outcomes and complications after endovascular treatment of brain arteriovenous malformations: a prognostication attempt using artificial intelligence. World Neurosurg 96:562–569

    PubMed  Google Scholar 

  8. Assi KC, Labelle H, Cheriet F (2014) Statistical model based 3D shape prediction of postoperative trunks for non-invasive scoliosis surgery planning. Comput Biol Med 48:85–93

    CAS  PubMed  Google Scholar 

  9. Azimi P, Mohammadi HR (2014) Predicting endoscopic third ventriculostomy success in childhood hydrocephalus: an artificial neural network analysis. J Neurosurg Pediatr 13:426–432

    PubMed  Google Scholar 

  10. Azimi P, Benzel EC, Shahzadi S, Azhari S, Mohammadi HR (2014) Use of artificial neural networks to predict surgical satisfaction in patients with lumbar spinal canal stenosis. J Neurosurg Spine 20:300–305

    PubMed  Google Scholar 

  11. Azimi P, Mohammadi HR, Benzel EC, Shahzadi S, Azhari S (2015) Use of artificial neural networks to predict recurrent lumbar disk herniation. Clin Spine Surg 28:E161–E165

    Google Scholar 

  12. Azimi P, Shahzadi S, Sadeghi S (2015) Use of artificial neural networks to predict the probability of developing new cerebral metastases after radiosurgery alone. J Neurosurg Sci

  13. Azimi P, Benzel EC, Shahzadi S, Azhari S, Mohammadi HR (2016) The prediction of successful surgery outcome in lumbar disc herniation based on artificial neural networks. J Neurosurg Sci 60:173–177

    PubMed  Google Scholar 

  14. Baumgarten C, Zhao Y, Sauleau P, Malrain C, Jannin P, Haegelen C (2016) Image-guided preoperative prediction of pyramidal tract side effect in deep brain stimulation: proof of concept and application to the pyramidal tract side effect induced by pallidal stimulation. J Med Imaging 3:25001

    Google Scholar 

  15. Bekelis K, Desai A, Bakhoum SF, Missios S (2014) A predictive model of complications after spine surgery: the National Surgical Quality Improvement Program (NSQIP) 2005-2010. Spine J 14:1247–1255. https://doi.org/10.1016/j.spinee.2013.08.009

    Article  PubMed  Google Scholar 

  16. Bernardo A (2017) The changing face of technologically integrated neurosurgery: today’s high-tech operating room. World Neurosurg 106:1001–1014

    PubMed  Google Scholar 

  17. Bernhardt BC, Hong S, Bernasconi A, Bernasconi N (2015) Magnetic resonance imaging pattern learning in temporal lobe epilepsy: classification and prognostics. Ann Neurol 77:436–446

    PubMed  Google Scholar 

  18. Bird S, Klein E, Loper E (2009) Natural language processing with Python: analyzing text with the natural language toolkit. O’Reilly Media, Inc, Sebastopol, CA

  19. Blei DM, Ng AY, Jordan MI (2003) Latent dirichlet allocation. J Mach Learn Res 3:993–1022

    Google Scholar 

  20. Bottou L, Curtis FE, Nocedal J (2018) Optimization methods for large-scale machine learning. SIAM Rev 60:223–311

    Google Scholar 

  21. Branco P, Torgo L, Ribeiro RP (2016) A survey of predictive modeling on imbalanced domains. ACM Comput Surv 49:31

    Google Scholar 

  22. Breiman L (2001) Random forests. Mach Learn 45:5–32

    Google Scholar 

  23. Brusko GD, Kolcun JPG, Wang MY (2018) Machine-learning models: the future of predictive analytics in neurosurgery. Neurosurgery 83:E3–E4

    PubMed  Google Scholar 

  24. Buchlak QD, Yanamadala V, Leveque J-C, Sethi R (2016) Complication avoidance with pre-operative screening: insights from the Seattle spine team. Curr Rev Musculoskelet Med 9:316–326. https://doi.org/10.1007/s12178-016-9351-x

    Article  PubMed  PubMed Central  Google Scholar 

  25. Buchlak QD, Yanamadala V, Leveque J-C, Edwards A, Nold K, Sethi R (2017) The Seattle spine score: predicting 30-day complication risk in adult spinal deformity surgery. J Clin Neurosci 43:247–255. https://doi.org/10.1016/j.jocn.2017.06.012

    Article  PubMed  Google Scholar 

  26. Buchlak QD, Kowalczyk M, Leveque J-C, Wright A, Farrokhi F (2018) Risk stratification in deep brain stimulation surgery: development of an algorithm to predict patient discharge disposition with 91.9% accuracy. J Clin Neurosci 57:26–32

    PubMed  Google Scholar 

  27. Campillo-Gimenez B, Garcelon N, Jarno P, Chapplain JM, Cuggia M (2012) Full-text automated detection of surgical site infections secondary to neurosurgery in Rennes, France. Stud Health Technol Inform 192:572–575

    Google Scholar 

  28. Chan A-W, Hróbjartsson A, Haahr MT, Gøtzsche PC, Altman DG (2004) Empirical evidence for selective reporting of outcomes in randomized trials: comparison of protocols to published articles. Jama 291:2457–2465

    CAS  PubMed  Google Scholar 

  29. Chuang J, Manning CD, Heer J (2012) Termite: visualization techniques for assessing textual topic models. In: Proceedings of the international working conference on advanced visual interfaces. ACM, pp 74–77

  30. Cohen KB, Glass B, Greiner HM, Holland-Bouley K, Standridge S, Arya R, Faist R, Morita D, Mangano F, Connolly B (2016) Methodological issues in predicting pediatric epilepsy surgery candidates through natural language processing and machine learning. Biomed inform insights 8:BII-S38308

    Google Scholar 

  31. Dian JA, Colic S, Chinvarun Y, Carlen PL, Bardakjian BL (2015) Identification of brain regions of interest for epilepsy surgery planning using support vector machines. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE, pp 6590–6593

  32. Dumont TM (2016) Prospective assessment of a symptomatic cerebral vasospasm predictive neural network model. World Neurosurg 94:126–130

    PubMed  Google Scholar 

  33. Dumont TM, Rughani AI, Tranmer BI (2011) Prediction of symptomatic cerebral vasospasm after aneurysmal subarachnoid hemorrhage with an artificial neural network: feasibility and comparison with logistic regression models. World Neurosurg 75:57–63

    PubMed  Google Scholar 

  34. Emblem KE, Due-Tonnessen P, Hald JK, Bjornerud A, Pinho MC, Scheie D, Schad LR, Meling TR, Zoellner FG (2014) Machine learning in preoperative glioma MRI: survival associations by perfusion-based support vector machine outperforms traditional MRI. J Magn Reson Imaging 40:47–54

    PubMed  Google Scholar 

  35. Emblem KE, Pinho MC, Zöllner FG, Due-Tonnessen P, Hald JK, Schad LR, Meling TR, Rapalino O, Bjornerud A (2014) A generic support vector machine model for preoperative glioma survival associations. Radiology 275:228–234

    PubMed  Google Scholar 

  36. Esmaili N, Piccardi M, Kruger B, Girosi F (2018) Analysis of healthcare service utilization after transport-related injuries by a mixture of hidden Markov models. PLoS One 13:e0206274

    PubMed  PubMed Central  Google Scholar 

  37. Fan B, Li H-X, Hu Y (2016) An intelligent decision system for intraoperative somatosensory evoked potential monitoring. IEEE Trans Neural Syst Rehabil Eng 24:300–307

    PubMed  Google Scholar 

  38. Fawcett C, Hoos HH (2016) Analysing differences between algorithm configurations through ablation. J Heuristics 22:431–458

    Google Scholar 

  39. Feng S, Wallace E, Grissom II A, Iyyer M, Rodriguez P, Boyd-Graber J (2018) Pathologies of neural models make interpretations difficult. In: proceedings of the 2018 conference on empirical methods in natural language processing. Pp 3719–3728

  40. Garcia-Cano E, Cosío FA, Duong L, Bellefleur C, Roy-Beaudry M, Joncas J, Parent S, Labelle H (2018) Prediction of spinal curve progression in adolescent idiopathic scoliosis using random forest regression. Comput Biol Med 103:34–43

    PubMed  Google Scholar 

  41. Gazit T, Andelman F, Glikmann-Johnston Y, Gonen T, Solski A, Shapira-Lichter I, Ovadia M, Kipervasser S, Neufeld MY, Fried I (2016) Probabilistic machine learning for the evaluation of presurgical language dominance. J Neurosurg 125:481–493

    CAS  PubMed  Google Scholar 

  42. Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature 521:452–459. https://doi.org/10.1038/nature14541

    Article  CAS  PubMed  Google Scholar 

  43. Greenspan H, Van Ginneken B, Summers RM (2016) Guest editorial deep learning in medical imaging: overview and future promise of an exciting new technique. IEEE Trans Med Imaging 35:1153–1159

    Google Scholar 

  44. Grigsby J, Kramer RE, Schneiders JL, Gates JR, Brewster Smith W (1998) Predicting outcome of anterior temporal lobectomy using simulated neural networks. Epilepsia 39:61–66

    CAS  PubMed  Google Scholar 

  45. Habibi Z, Ertiaei A, Nikdad MS, Mirmohseni AS, Afarideh M, Heidari V, Saberi H, Rezaei AS, Nejat F (2016) Predicting ventriculoperitoneal shunt infection in children with hydrocephalus using artificial neural network. Childs Nerv Syst 32:2143–2151

    PubMed  Google Scholar 

  46. Hale AT, Stonko DP, Lim J, Guillamondegui OD, Shannon CN, Patel MB (2018) Using an artificial neural network to predict traumatic brain injury. J Neurosurg Pediatr 1:1–8

    Google Scholar 

  47. Heaton J (2008) Introduction to neural networks with Java. Heaton Research, Inc, Chesterfield, MO

  48. Hoffman H, Lee SI, Garst JH, Lu DS, Li CH, Nagasawa DT, Ghalehsari N, Jahanforouz N, Razaghy M, Espinal M (2015) Use of multivariate linear regression and support vector regression to predict functional outcome after surgery for cervical spondylotic myelopathy. J Clin Neurosci 22:1444–1449

    PubMed  PubMed Central  Google Scholar 

  49. Hosmer DW, Lemeshow S, Sturdivant RX (2013) Applied logistic regression, 3rd edn. Wiley

  50. Işın A, Direkoğlu C, Şah M (2016) Review of MRI-based brain tumor image segmentation using deep learning methods. Procedia Comput Sci 102:317–324

    Google Scholar 

  51. Izadyyazdanabadi M, Belykh E, Mooney M, Eschbacher J, Nakaji P, Yang Y, Preul MC (2018) Prospects for theranostics in neurosurgical technology: empowering confocal laser endomicroscopy diagnostics via deep learning. arXiv Prepr arXiv180409873

  52. Izadyyazdanabadi M, Belykh E, Mooney M, Martirosyan N, Eschbacher J, Nakaji P, Preul MC, Yang Y (2018) Convolutional neural networks: ensemble modeling, fine-tuning and unsupervised semantic localization for neurosurgical CLE images. J Vis Commun Image Represent 54:10–20

    Google Scholar 

  53. Jermyn M, Mok K, Mercier J, Desroches J, Pichette J, Saint-Arnaud K, Bernstein L, Guiot M-C, Petrecca K, Leblond F (2015) Intraoperative brain cancer detection with Raman spectroscopy in humans. Sci Transl Med 7:274ra19

    CAS  PubMed  Google Scholar 

  54. Ji M, Lewis S, Camelo-Piragua S, Ramkissoon SH, Snuderl M, Venneti S, Fisher-Hubbard A, Garrard M, Fu D, Wang AC (2015) Detection of human brain tumor infiltration with quantitative stimulated Raman scattering microscopy. Sci Transl Med 7:309ra163

    PubMed  PubMed Central  Google Scholar 

  55. Jordan MI, Mitchell TM (2015) Machine learning: trends, perspectives, and prospects. Science (80- ) 349:255–260. https://doi.org/10.1126/science.aaa8415

    Article  CAS  Google Scholar 

  56. Juan-Albarracín J, Fuster-Garcia E, Manjón JV, Robles M, Aparici F, Martí-Bonmatí L, García-Gómez JM (2015) Automated glioblastoma segmentation based on a multiparametric structured unsupervised classification. PLoS One 10:e0125143

    PubMed  PubMed Central  Google Scholar 

  57. Karhade AV, Thio Q, Ogink P, Kim J, Lozano-Calderon S, Raskin K, Schwab JH (2018) Development of machine learning algorithms for prediction of 5-year spinal chordoma survival. World Neurosurg 119:e842–e847. https://doi.org/10.1016/j.wneu.2018.07.276

    Article  PubMed  Google Scholar 

  58. Khor S, Lavallee D, Cizik AM, Bellabarba C, Chapman JR, Howe CR, Lu D, Mohit AA, Oskouian RJ, Roh JR (2018) Development and validation of a prediction model for pain and functional outcomes after lumbar spine surgery. JAMA Surg 153:634–642

    PubMed  PubMed Central  Google Scholar 

  59. Kim JS, Arvind V, Oermann EK, Kaji D, Ranson W, Ukogu C, Hussain AK, Caridi J, Cho SK (2018) Predicting surgical complications in patients undergoing elective adult spinal deformity procedures using machine learning. Spine Deform 6:762–770

    PubMed  Google Scholar 

  60. Kim JS, Merrill RK, Arvind V, Kaji D, Pasik SD, Nwachukwu CC, Vargas L, Osman NS, Oermann EK, Caridi JM (2018) Examining the ability of artificial neural networks machine learning models to accurately predict complications following posterior lumbar spine fusion. Spine (Phila Pa 1976) 43:853–860

    Google Scholar 

  61. Konar SK, Maiti TK, Bir SC, Kalakoti P, Bollam P, Nanda A (2016) Predictive factors determining the overall outcome of primary spinal glioblastoma multiforme: an integrative survival analysis. World Neurosurg 86:341–348

    PubMed  Google Scholar 

  62. Kostoglou K, Michmizos KP, Stathis P, Sakas D, Nikita KS, Mitsis GD (2017) Classification and prediction of clinical improvement in deep brain stimulation from intraoperative microelectrode recordings. IEEE Trans Biomed Eng 64:1123–1130

    PubMed  Google Scholar 

  63. Liang Z, Zhang G, Huang JX, Hu QV (2014) Deep learning for healthcare decision making with EMRs. In: bioinformatics and biomedicine (BIBM), 2014 IEEE international conference on. IEEE, pp 556–559

  64. Ling M, Tao X, Ma S, Yang X, Liu L, Fan X, Jia G, Qiao H (2018) Predictive value of intraoperative facial motor evoked potentials in vestibular schwannoma surgery under 2 anesthesia protocols. World Neurosurg 111:e267–e276

    PubMed  Google Scholar 

  65. Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van Ginneken B, Sánchez CI (2017) A survey on deep learning in medical image analysis. Med Image Anal 42:60–88

    PubMed  Google Scholar 

  66. Lubelski D, Derakhshan A, Nowacki AS, Wang JC, Steinmetz MP, Benzel EC, Mroz TE (2014) Predicting C5 palsy via the use of preoperative anatomic measurements. Spine J 14:1895–1901. https://doi.org/10.1016/j.spinee.2013.10.038

    Article  PubMed  Google Scholar 

  67. Macyszyn L, Akbari H, Pisapia JM, Da X, Attiah M, Pigrish V, Bi Y, Pal S, Davuluri RV, Roccograndi L, Dahmane N, Martinez-Lage M, Biros G, Wolf RL, Bilello M, O’Rourke DM, Davatzikos C (2016) Imaging patterns predict patient survival and molecular subtype in glioblastoma via machine learning techniques. Neuro-Oncology 18:417–425. https://doi.org/10.1093/neuonc/nov127

    Article  PubMed  Google Scholar 

  68. Manning C, Surdeanu M, Bauer J, Finkel J, Bethard S, McClosky D (2014) The Stanford CoreNLP natural language processing toolkit. In: proceedings of 52nd annual meeting of the association for computational linguistics: system demonstrations. Pp 55–60

  69. Manogaran G, Lopez D (2017) A survey of big data architectures and machine learning algorithms in healthcare. Int J Biomed Eng Technol 25:182–211

    Google Scholar 

  70. Memarian N, Kim S, Dewar S, Engel J Jr, Staba RJ (2015) Multimodal data and machine learning for surgery outcome prediction in complicated cases of mesial temporal lobe epilepsy. Comput Biol Med 64:67–78

    PubMed  PubMed Central  Google Scholar 

  71. Miotto R, Wang F, Wang S, Jiang X, Dudley JT (2017) Deep learning for healthcare: review, opportunities and challenges. Brief Bioinform 19(6):1236–1246

  72. Missios S, Kalakoti P, Nanda A, Bekelis K (2015) Craniotomy for glioma resection: a predictive model. World Neurosurg 83:957–964

    PubMed  Google Scholar 

  73. Mitchell TJ, Hacker CD, Breshears JD, Szrama NP, Sharma M, Bundy DT, Pahwa M, Corbetta M, Snyder AZ, Shimony JS (2013) A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery 73:969–983

    PubMed  Google Scholar 

  74. Moher D, Liberati A, Tetzlaff J, Altman DG (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. Ann Intern Med 151:264–269

    PubMed  Google Scholar 

  75. Morton S, Berg A, Levit L, Eden J (2011) Finding what works in health care: standards for systematic reviews. National Academies Press, Washington DC

  76. Munsell BC, Wee C-Y, Keller SS, Weber B, Elger C, da Silva LAT, Nesland T, Styner M, Shen D, Bonilha L (2015) Evaluation of machine learning algorithms for treatment outcome prediction in patients with epilepsy based on structural connectome data. Neuroimage 118:219–230

    PubMed  Google Scholar 

  77. Njiwa JY, Gray KR, Costes N, Mauguiere F, Ryvlin P, Hammers A (2015) Advanced [18F] FDG and [11C] flumazenil PET analysis for individual outcome prediction after temporal lobe epilepsy surgery for hippocampal sclerosis. NeuroImage Clin 7:122–131

    Google Scholar 

  78. Noble WS (2006) What is a support vector machine? Nat Biotechnol 24:1565–1567

    CAS  PubMed  Google Scholar 

  79. Obermeyer Z, Emanuel EJ (2016) Predicting the future—big data, machine learning, and clinical medicine. N Engl J Med 375:1216–1219

    PubMed  PubMed Central  Google Scholar 

  80. Oermann EK, Kress M-AS, Collins BT, Collins SP, Morris D, Ahalt SC, Ewend MG (2013) Predicting survival in patients with brain metastases treated with radiosurgery using artificial neural networks. Neurosurgery 72:944–952

    PubMed  Google Scholar 

  81. Oermann EK, Rubinsteyn A, Ding D, Mascitelli J, Starke RM, Bederson JB, Kano H, Lunsford LD, Sheehan JP, Hammerbacher J (2016) Using a machine learning approach to predict outcomes after radiosurgery for cerebral arteriovenous malformations. Sci Rep 6:21161

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Panesar SS, D’Souza RN, Yeh F-C, Fernandez-Miranda JC (2019) Machine learning versus logistic regression methods for 2-year mortality prognostication in a small, heterogeneous glioma database. World Neurosurg X:100012

  83. Patel JL, Goyal RK (2007) Applications of artificial neural networks in medical science. Curr Clin Pharmacol 2:217–226

    PubMed  Google Scholar 

  84. Peng SY, Wu KC, Wang JJ, Chuang JH, Peng SK, Lai YH (2006) Predicting postoperative nausea and vomiting with the application of an artificial neural network. BJA Br J Anaesth 98:60–65

    PubMed  Google Scholar 

  85. Qian Y, Hui R, Gao X (2013) 3D CBIR with sparse coding for image-guided neurosurgery. Signal Process 93:1673–1683

    Google Scholar 

  86. Quinlan JR (1986) Induction of decision trees. Mach Learn 1:81–106

    Google Scholar 

  87. Raschka S, Mirjalili V (2017) Python machine learning. Packt Publishing Ltd

  88. Řehůřek R (2011) Scalability of semantic analysis in natural language processing

  89. Rehurek R, Sojka P (2010) Software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on new challenges for NLP frameworks. Citeseer

  90. Richards D (2008) Handsearching still a valuable element of the systematic review. Evid Based Dent 9:85

    PubMed  Google Scholar 

  91. Russell SJ, Norvig P (2016) Artificial intelligence: a modern approach. Pearson education limited, Malaysia

    Google Scholar 

  92. Ryu SM, Lee S-H, Kim E-S, Eoh W (2018) Predicting survival of spinal ependymoma patients using machine learning algorithms with SEER database. World Neurosurg 124:e331–339

  93. Sampson M, McGowan J, Tetzlaff J, Cogo E, Moher D (2008) No consensus exists on search reporting methods for systematic reviews. J Clin Epidemiol 61:748–754

    PubMed  Google Scholar 

  94. Savin I, Ershova K, Kurdyumova N, Ershova O, Khomenko O, Danilov G, Shifrin M, Zelman V (2018) Healthcare-associated ventriculitis and meningitis in a neuro-ICU: incidence and risk factors selected by machine learning approach. J Crit Care 45:95–104

    PubMed  Google Scholar 

  95. Scheer JK, Smith JS, Schwab F, Lafage V, Shaffrey CI, Bess S, Daniels AH, Hart RA, Protopsaltis TS, Mundis GM (2017) Development of a preoperative predictive model for major complications following adult spinal deformity surgery. J Neurosurg Spine 26:736–743

    PubMed  Google Scholar 

  96. Selbst AD, Barocas S (2018) The intuitive appeal of explainable machines. Fordham L Rev 87:1085

    Google Scholar 

  97. Senders JT, Arnaout O, Karhade AV, Dasenbrock HH, Gormley WB, Broekman ML, Smith TR (2017) Natural and artificial intelligence in neurosurgery: a systematic review. Neurosurgery 83(2):181–192

  98. Senders JT, Staples PC, Karhade AV, Zaki MM, Gormley WB, Broekman MLD, Smith TR, Arnaout O (2018) Machine learning and neurosurgical outcome prediction: a systematic review. World Neurosurg 109:476–486

    PubMed  Google Scholar 

  99. Senders JT, Zaki MM, Karhade AV, Chang B, Gormley WB, Broekman ML, Smith TR, Arnaout O (2018) An introduction and overview of machine learning in neurosurgical care. Acta Neurochir 160:29–38

    PubMed  Google Scholar 

  100. Sethi RK, Pong RP, Leveque J-C, Dean TC, Olivar SJ, Rupp SM (2014) The Seattle Spine Team approach to adult deformity surgery: a systems-based approach to perioperative care and subsequent reduction in perioperative complication rates. Spine Deform 2:95–103

    PubMed  Google Scholar 

  101. Sethi RK, Buchlak QD, Leveque J-C, Wright AK, Yanamadala VV (2018) Quality and safety improvement initiatives in complex spine surgery. In: Seminars in Spine Surgery 30(2):111–120

  102. Shamim MS, Glasgow M, Neurosurgery F, Enam SA, Ire F, Sn F (2009) Fuzzy Logic in neurosurgery : predicting poor outcomes after lumbar disk surgery in 501 consecutive patients. Surg Neurol 72:565–572. https://doi.org/10.1016/j.surneu.2009.07.012

    Article  PubMed  Google Scholar 

  103. Shamir RR, Dolber T, Noecker AM, Walter BL, McIntyre CC (2015) Machine learning approach to optimizing combined stimulation and medication therapies for Parkinson’s disease. Brain Stimul 8:1025–1032

    PubMed  PubMed Central  Google Scholar 

  104. Shen D, Wu G, Suk H-I (2017) Deep learning in medical image analysis. Annu Rev Biomed Eng 19:221–248. https://doi.org/10.1146/annurev-bioeng-071516-044442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Shi H-Y, Hwang S-L, Lee K-T, Lin C-L (2013) In-hospital mortality after traumatic brain injury surgery: a nationwide population-based comparison of mortality predictors used in artificial neural network and logistic regression models. J Neurosurg 118:746–752

    PubMed  Google Scholar 

  106. Sievert C, Shirley K (2014) LDAvis: a method for visualizing and interpreting topics. In: Proceedings of the workshop on interactive language learning, visualization, and interfaces. Baltimore, MD pp 63–70

  107. Skrobala A, Malicki J (2014) Beam orientation in stereotactic radiosurgery using an artificial neural network. Radiother Oncol 111:296–300

    PubMed  Google Scholar 

  108. Song F, Parekh-Bhurke S, Hooper L, Loke YK, Ryder JJ, Sutton AJ, Hing CB, Harvey I (2009) Extent of publication bias in different categories of research cohorts: a meta-analysis of empirical studies. BMC Med Res Methodol 9:79

    PubMed  PubMed Central  Google Scholar 

  109. Staartjes VE, Marlies P, Vandertop WP, Schröder ML (2018) Deep learning-based preoperative predictive analytics for patient-reported outcomes following lumbar diskectomy: feasibility of center-specific modeling. Spine J 19(5):853–861

  110. Sutton RS, Barto AG (1998) Reinforcement Learning: An Introduction. In: Introduction to reinforcement learning. MIT press Cambridge

  111. Suykens JAK (2014) Introduction to machine learning. Academic Press Library in Signal Processing 1:765–773

  112. Taghva A (2010) An automated navigation system for deep brain stimulator placement using hidden Markov models. Oper Neurosurg 66:ons-108

    Google Scholar 

  113. Taghva A (2011) Hidden semi-Markov models in the computerized decoding of microelectrode recording data for deep brain stimulator placement. World Neurosurg 75:758–763

    PubMed  Google Scholar 

  114. Taylor PN, Sinha N, Wang Y, Vos SB, de Tisi J, Miserocchi A, McEvoy AW, Winston GP, Duncan JS (2018) The impact of epilepsy surgery on the structural connectome and its relation to outcome. NeuroImage Clin 18:202–214

    PubMed  PubMed Central  Google Scholar 

  115. Tonutti M, Gras G, Yang G-Z (2017) A machine learning approach for real-time modelling of tissue deformation in image-guided neurosurgery. Artif Intell Med 80:39–47

    PubMed  Google Scholar 

  116. Valsky D, Marmor-Levin O, Deffains M, Eitan R, Blackwell KT, Bergman H, Israel Z (2017) Stop! Border ahead: automatic detection of subthalamic exit during deep brain stimulation surgery. Mov Disord 32:70–79

    PubMed  Google Scholar 

  117. Vergun S, Suhonen JI, Nair VA, Kuo JS, Baskaya MK, Garcia-Ramos C, Meyerand EE, Prabhakaran V (2018) Predicting primary outcomes of brain tumor patients with advanced neuroimaging MRI measures. Interdiscip Neurosurg 13:109–118

    PubMed  PubMed Central  Google Scholar 

  118. Wolff RF, Moons KGM, Riley RD, Whiting PF, Westwood M, Collins GS, Reitsma JB, Kleijnen J, Mallett S (2019) PROBAST: a tool to assess the risk of bias and applicability of prediction model studies. Ann Intern Med 170:51–58

    PubMed  Google Scholar 

  119. Wong S, Baltuch GH, Jaggi JL, Danish SF (2009) Functional localization and visualization of the subthalamic nucleus from microelectrode recordings acquired during DBS surgery with unsupervised machine learning. J Neural Eng 6:26006

    CAS  Google Scholar 

  120. Zaidel A, Spivak A, Shpigelman L, Bergman H, Israel Z (2009) Delimiting subterritories of the human subthalamic nucleus by means of microelectrode recordings and a Hidden Markov Model. Mov Disord 24:1785–1793

    PubMed  Google Scholar 

  121. Zhu X, Goldberg AB (2009) Introduction to semi-supervised learning. Synth Lect Artif Intell Mach Learn 3:1–130

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Quinlan D. Buchlak.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This was a systematic review based on published literature and the PRISMA guidelines and the need for full ethics review was waived by the institution’s ethics committee.

Informed consent

Not applicable.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Buchlak, Q.D., Esmaili, N., Leveque, JC. et al. Machine learning applications to clinical decision support in neurosurgery: an artificial intelligence augmented systematic review. Neurosurg Rev 43, 1235–1253 (2020). https://doi.org/10.1007/s10143-019-01163-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10143-019-01163-8

Keywords

Navigation