Resection of supratentorial gliomas: the need to merge microsurgical technical cornerstones with modern functional mapping concepts. An overview

Abstract

Although surgery is not curative for the majority of intracranial gliomas, radical resection has been demonstrated to influence survival and delay tumor progression. Because gliomas are very frequently located in eloquent or more generally critical areas, surgeons must always balance the maximizing resection with the need to preserve neurological function. In this overview, we tried to summarize the recent literature and our personal experience about (1) the benefits and limits of using preoperative anatomical and functional neuroimaging (anatomical MRI, DTI fiber tracking, and functional MRI), (2) the issues to consider in planning the surgical strategy, (3) the need to thoroughly understand microsurgical techniques that enable a maximal resection (subpial dissection, vascular manipulation, etc.), (4) the importance of individualizing surgical strategy especially in patients with gliomas in eloquent areas (the role of neuropsychological evaluation in redefining eloquent and non-eloquent areas), and (5) how to use intraoperative mapping techniques and understand why and when to use them. Through this paper, the reader should become more familiar with a comprehensive panel of techniques and methodologies but more importantly become aware that these recent technical advances facilitate a conceptual change from classical surgical paradigms toward a more patient-specific approach.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig 3
Fig. 4
Fig. 5

References

  1. 1.

    Gorlia T, van den Bent MJ, Hegi ME, Mirimanoff RO, Weller M, Cairncross JG et al (2008) Nomograms for predicting survival of patients with newly diagnosed glioblastoma: prognostic factor analysis of EORTC and NCIC trial 26981-22981/CE.3. Lancet Oncol 9:29–38

    PubMed  Article  Google Scholar 

  2. 2.

    Mineo JF, Bordron A, Baroncini M, Ramirez C, Maurage CA, Blond S et al (2007) Prognosis factors of survival time in patients with glioblastoma multiforme: a multivariate analysis of 340 patients. Acta Neurochir (Wien) 149:245–253

    Article  Google Scholar 

  3. 3.

    Yeh SA, Ho JT, Lui CC, Huang YJ, Hsiung CY, Huang EY (2005) Treatment outcomes and prognostic factors in patients with supratentorial low-grade gliomas. Br J Radiol 78(927):230–235

    PubMed  Article  Google Scholar 

  4. 4.

    Capelle L, Fontaine D, Mandonnet E, Taillandier L, Golmard JL, Bauchet L et al (2012) Spontaneous and therapeutic prognostic factors in adult hemispheric World Health Organization Grade II gliomas: a series of 1097 cases: clinical article. J Neurosurg 118(6):1157–1168

    Article  Google Scholar 

  5. 5.

    Chaichana KL, McGirt MJ, Laterra J, Olivi A, Quiñones-Hinojosa A (2010) Recurrence and malignant degeneration after resection of adult hemispheric low-grade gliomas. clinical article. J Neurosurg 112:10–17

    PubMed  Article  Google Scholar 

  6. 6.

    Jung TY, Jung S, Moon JH, Kim IY, Moon KS, Jang WY (2011) Early prognostic factors related to progression and malignant transformation of low-grade gliomas. Clin Neurol Neurosurg 113(9):752–757

    PubMed  Article  Google Scholar 

  7. 7.

    Sanai N, Chang S, Berger MS (2011) Low-grade gliomas in adults—a review. J Neurosurg 115:948–965

    PubMed  Article  Google Scholar 

  8. 8.

    Smith JS, Chang EF, Lamborn KR, Chang SM, Prados MD, Cha S et al (2008) Role of extent of resection in the long-term outcome of low-grade hemispheric gliomas. J Clin Oncol 26:1338–1345

    PubMed  Article  Google Scholar 

  9. 9.

    Ius T, Isola M, Budai R, Pauletto G, Tomasino B, Fadiga L, Skrap M (2012) Low-grade glioma surgery in eloquent areas: volumetric analysis of extent of resection and its impact on overall survival. A single-institution experience in 190 patients: clinical article. J Neurosurg 117(6):1039–1052

    PubMed  Article  Google Scholar 

  10. 10.

    Sankar T, Moore NZ, Johnson J, Ashby LS, Scheck AC, Shapiro WR, Smith KA, Spetzler RF, Preul MC (2012) Magnetic resonance imaging volumetric assessment of the extent of contrast enhancement and resection in oligodendroglial tumors. J Neurosurg 116(6):1172–1181

    PubMed  Article  Google Scholar 

  11. 11.

    Gulati S, Jakola AS, Nerland US, Weber C, Solheim O (2011) The risk of getting worse: surgically acquired deficits, perioperative complications, and functional outcomes after primary resection of glioblastoma. World Neurosurg 76(6):572–579

    PubMed  Article  Google Scholar 

  12. 12.

    Jakola AS, Gulati S, Weber C, Unsgård G, Solheim O (2011) Postoperative deterioration in health related quality of life as predictor for survival in patients with glioblastoma: a prospective study. PLoS ONE 6(12):e28592. doi:10.1371/journal.pone.0028592

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  13. 13.

    McGirt MJ, Mukherjee D, Chaichana KL, Than KD, Weingart JD, Quinones-Hinojosa A (2009) Association of surgically acquired motor and language deficits on overall survival after resection of glioblastoma multiforme. Neurosurgery 65(3):463–469

    PubMed  Article  Google Scholar 

  14. 14.

    Carrabba G, Fava E, Giussani C, Acerbi F, Portaluri F, Songa V et al (2007) Cortical and subcortical motor mapping in rolandic and perirolandic glioma surgery: impact on postoperative morbidity and extent of resection. J Neurosurg Sci 51:45–51

    CAS  PubMed  Google Scholar 

  15. 15.

    De Witt Hamer PC, Robles SG, Zwinderman AH, Duffau H, Berger MS (2012) Impact of intraoperative stimulation brain mapping on glioma surgery outcome: a meta-analysis. J Clin Oncol 10 20:2559–2565

    Article  Google Scholar 

  16. 16.

    Duffau H, Capelle L, Denvil D, Sichez N, Gatignol P, Taillandier L et al (2003) Usefulness of intraoperative electrical subcortical mapping during surgery for low-grade gliomas located within eloquent brain regions: functional results in a consecutive series of 103 patients. J Neurosurg 98(4):764–778

    PubMed  Article  Google Scholar 

  17. 17.

    Keles GE, Lundin DA, Lamborn KR, Chang EF, Ojemann G, Berger MS (2004) Intraoperative subcortical stimulation mapping for hemispherical perirolandic gliomas located within or adjacent to the descending motor pathways: evaluation of morbidity and assessment of functional outcome in 294 patients. J Neurosurg 100(3):369–375

    PubMed  Article  Google Scholar 

  18. 18.

    Spena G, D’Agata F, Panciani PP, Buglione di Monale M, Fontanella MM (2013) Supratentorial gliomas in eloquent areas: which parameters can predict functional outcome and extent of resection? PLoS ONE 8(12):e80916. doi:10.1371/journal.pone.0080916

    PubMed Central  PubMed  Article  Google Scholar 

  19. 19.

    Spena G, Nava A, Cassini F, Pepoli A, Bruno M, D’Agata F, Cauda F, Sacco K, Duca S, Barletta L, Versari P (2010) Preoperative and intraoperative brain mapping for the resection of eloquent-area tumors. A prospective analysis of methodology, correlation, and usefulness based on clinical outcomes. Acta Neurochir 152:1835–1846

    PubMed  Article  Google Scholar 

  20. 20.

    Upadhyay N, Waldman AD (2011) Conventional MRI evaluation of gliomas. Br J Radiol 84 Spec No 2:S107-11

  21. 21.

    Castellano A, Bello L, Michelozzi C, Gallucci M, Fava E, Iadanza A, Riva M, Casaceli G, Falini A (2012) Role of diffusion tensor magnetic resonance tractography in predicting the extent of resection in glioma surgery. Neuro Oncol 14(2):192–202

    PubMed Central  PubMed  Article  Google Scholar 

  22. 22.

    Talos IF, Zou KH, Ohno-Machado L, Bhagwat JG, Kikinis R, Black PM, Jolesz FA (2006) Supratentorial low-gradeglioma resectability: statistical predictive analysis based on anatomic MR features and tumor characteristics. Radiology 239:506–513

    PubMed Central  PubMed  Article  Google Scholar 

  23. 23.

    Beppu T, Inoue T, Nishimoto H, Ogasawara K, Ogawa A, Sasaki M (2007) Preoperative imaging of superficially located glioma resection using short inversion-time inversion recovery images in high-field magnetic resonance imaging. Clin Neurol Neurosurg 109(4):327–334

    PubMed  Article  Google Scholar 

  24. 24.

    Fujii Y, Nakayama N, Nakada T (1998) High-resolution T2-reversed magnetic resonance imaging on a high magnetic field system. technical note. J Neurosurg 89:492–495

    CAS  PubMed  Article  Google Scholar 

  25. 25.

    Esposito V, Paolini S, Morace R, Colonnese C, Venditti E, Calistri V et al (2008) Intraoperative localization of subcortical brain lesions. Acta Neurochir 150(6):537–542

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Spena G, Garbossa D, Panciani PP, Griva F, Fontanella MM (2013) Purely subcortical tumors in eloquent areas: awake surgery and cortical and subcortical electrical stimulation (CSES) ensure safe and effective surgery. Clin Neurol Neurosurg 115(9):1595–1601

    PubMed  Article  Google Scholar 

  27. 27.

    Achten E, Jackson GD, Cameron JA, Abbott DF, Stella DL, Fabinyi GC (1999) Presurgical evaluation of the motor hand area with functional MR imaging in patients with tumors and dysplastic lesions. Radiology 210:529–538

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Dymarkowski S, Sunaert S, Van Oostende S, Van Hecke P, Wilms G, Demaerel P, Nuttin B, Plets C, Marchal G (1998) Functional MRI of the brain: localisation of eloquent cortex in focal brain lesion therapy. Eur Radiol 8(9):1573–1580

    CAS  PubMed  Article  Google Scholar 

  29. 29.

    Roux FE, Boulanouar K, Ranjeva JP, Manelfe C, Tremoulet M, Sabatier J, Berry I (1999) Cortical intraoperative stimulation in brain tumors as a tool to evaluate spatial data from motor functional MRI. Investig Radiol 34:225–229

    CAS  Article  Google Scholar 

  30. 30.

    Lehéricy S, Duffau H, Cornu P, Capelle L, Pidoux B, Carpentier (2000) Correspondence between functional magnetic resonance imaging somatotopy and individual brain anatomy of the central region: comparison with intraoperative stimulation in patients with brain tumors. J Neurosurg 92(4):589–598

    PubMed  Article  Google Scholar 

  31. 31.

    Majos A, Tybor K, Stefańczyk L, Góraj B (2005) Cortical mapping by functional magnetic resonance imaging in patients with brain tumors. Eur Radiol 15:1148–1158

    PubMed  Article  Google Scholar 

  32. 32.

    Petrovich N, Holodny AI, Tabar V, Correa DD, Hirsch J, Gutin PH, Brennan CW (2005) Discordance between functional magnetic resonance imaging during silent speech tasks and intraoperative speech arrest. J Neurosurg 103:267–274

    PubMed  Article  Google Scholar 

  33. 33.

    Rutten GJ, Ramsey NF, van Rijen PC, Noordmans HJ, van Veelen CW (2002) Development of a functional magnetic resonance imaging protocol for intraoperative localization of critical temporo-parietal language areas. Ann Neurol 51:350–360

    CAS  PubMed  Article  Google Scholar 

  34. 34.

    Bizzi A, Blasi V, Falini A, Ferroli P, Cadioli M, Danesi U, Aquino D, Marras C, Caldiroli D, Broggi G (2008) Presurgical functional MR imaging of language and motor functions: validation with intraoperative electrocortical mapping. Radiology 248(2):579–589

    PubMed  Article  Google Scholar 

  35. 35.

    Gupta DK, Chandra PS, Ojha BK, Sharma BS, Mahapatra AK, Mehta VS (2007) Awake craniotomy versus surgery under general anesthesia for resection of intrinsic lesions of eloquent cortex-a prospective randomised study. Clin Neurol Neurosurg 109(4):335–343

    PubMed  Article  Google Scholar 

  36. 36.

    Haberland N, Ebmeier K, Hliscs R, Grnewald JP, Silbermann J, Steenbeck J et al (2000) Neuronavigation in surgery of intracranial and spinal tumors. J Cancer Res Clin Oncol 126(9):529–541

    CAS  PubMed  Article  Google Scholar 

  37. 37.

    Stummer W, Tonn JC, Mehdorn HM, Nestler U, Franz K, Goetz C, Bink A, Pichlmeier U, ALA-Glioma Study Group (2011) Counterbalancing risks and gains from extended resections in malignant glioma surgery: a supplemental analysis from the randomized 5-aminolevulinic acid glioma resection study. Clinical article. J Neurosurg 114(3):613–623

    PubMed  Article  Google Scholar 

  38. 38.

    Ulmer JL, Hacein-Bey L, Mathews VP, Mueller WM, DeYoe EA, Prost RW, Meyer GA, Krouwer HG, Schmainda KM (2004) Lesion-induced pseudodominance at functional magnetic resonance imaging: implications for preoperative assessments. Neurosurgery 55:569–579

    PubMed  Article  Google Scholar 

  39. 39.

    Nucifora PG, Verma R, Lee SK, Melhem ER (2007) Diffusion-tensor MR imaging and tractography: exploring brain microstructure and connectivity. Radiology 245:367–384

    PubMed  Article  Google Scholar 

  40. 40.

    Catani M, Howard RJ, Pajevic S, Jones DK (2002) Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage 17:77–94

    PubMed  Article  Google Scholar 

  41. 41.

    Leclercq D, Duffau H, Delmaire C, Capelle L, Gatignol P, Ducros (2010) Comparison of diffusion tensor imaging tractography of language tracts and intraoperative subcortical stimulations. J Neurosurg 112:503–511

    PubMed  Article  Google Scholar 

  42. 42.

    Bucci M, Mandelli ML, Berman JI, Amirbekian B, Nguyen C, Berger MS, Henry RG (2013) Quantifying diffusion MRI tractography of the corticospinal tract in brain tumors with deterministic and probabilistic methods. Neuroimage Clin 20(3):361–368

    Article  Google Scholar 

  43. 43.

    Yordanova YN, Moritz-Gasser S, Duffau H (2011) Awake surgery for WHO Grade II gliomas within “noneloquent” areas in the left dominant hemisphere: toward a “supratotal” resection. Clinical article. J Neurosurg 115(2):232–239

    PubMed  Article  Google Scholar 

  44. 44.

    Duffau H, Gatignol P, Mandonnet E, Capelle L, Taillandier L (2008) Intraoperative subcortical stimulation mapping of language pathways in a consecutive series of 115 patients with Grade II glioma in the left dominant hemisphere. J Neurosurg 109:461–471

    PubMed  Article  Google Scholar 

  45. 45.

    Kim SS, McCutcheon IE, Suki D, Weinberg JS, Sawaya R, Lang FF, Ferson D, Heimberger AB, DeMonte F, Prabhu SS (2009) Awake craniotomy for brain tumors near eloquent cortex: correlation of intraoperative cortical mapping with neurological outcomes in 309 consecutive patients. Neurosurgery 64(5):836–845

    PubMed  Article  Google Scholar 

  46. 46.

    Sanai N, Berger MS (2012) Recent surgical management of gliomas. Adv Exp Med Biol 746:12–25

    PubMed  Article  Google Scholar 

  47. 47.

    Panciani PP, Fontanella M, Schatlo B, Garbossa D, Agnoletti A, Ducati A, Lanotte M (2012) Fluorescence and image guided resection in high grade glioma. Clin Neurol Neurosurg 114(1):37–41

    PubMed  Article  Google Scholar 

  48. 48.

    Gempt J, Krieg SM, Hüttinger S, Buchmann N, Ryang YM, Shiban E, Meyer B, Zimmer C, Förschler A, Ringel F (2013) Postoperative ischemic changes after glioma resection identified by diffusion-weighted magnetic resonance imaging and their association with intraoperative motor evoked potentials. J Neurosurg 119(6):1395–1400

    PubMed  Article  Google Scholar 

  49. 49.

    Al-Otaibi F, Baeesa SS, Parrent AG, Girvin JP, Steven D (2012) Surgical techniques for the treatment of temporal lobe epilepsy. Epilepsy Res Treat:374848. doi: 10.1155/2012/374848

  50. 50.

    Bello L, Riva M, Fava E, Ferpozzi V, Castellano A, Raneri F, Pessina F, Bizzi A, Falini A, Cerri G (2014) Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro Oncol. doi:10.1093/neuonc/not327

    PubMed  Google Scholar 

  51. 51.

    Sanai N, Berger MS (2008) Mapping the horizon: techniques to optimize tumor resection before and during surgery. Clin Neurosurg 55:14–19

    PubMed  Google Scholar 

  52. 52.

    Gil-Robles S, Duffau H (2010) Surgical management of World Health Organization Grade II gliomas in eloquent areas: the necessity of preserving a margin around functional structures. Neurosurg Focus 28(2):E8

    PubMed  Article  Google Scholar 

  53. 53.

    Walter J, Kuhn SA, Waschke A, Kalff R, Ewald C (2011) Operative treatment of subcortical metastatic tumors in the central region. J Neuro-Oncol 103(3):567–573

    CAS  Article  Google Scholar 

  54. 54.

    Yasargil MG (1984) Microneurosurgery, vol I. Georg Thieme, Stuttgart

    Google Scholar 

  55. 55.

    Yasargil MG (1994) Microneurosurgery, vol IV. Georg Thieme, Stuttgart

    Google Scholar 

  56. 56.

    Yasargil MG (1996) Microneurosurgery, vol IVb. Georg Thieme, Stuttgart

    Google Scholar 

  57. 57.

    Foerster O (1931) The cerebral cortex in man. Lancet 2:309–312

    Google Scholar 

  58. 58.

    Penfield W (1950) The cerebral cortex of man. Macmillan, New York

    Google Scholar 

  59. 59.

    Penfield W, Boldrey E (1937) Somatic motor and sensory representation in the cerebral cortex of man as studied by electrical stimulation. Brain 60:389–443

    Article  Google Scholar 

  60. 60.

    Penfield,W. & Erickson, T.C. (1941) Epilepsy and cerebral localization. a study of the mechanism, treatment, and prevention of epileptic seizures. Springfield, IL

  61. 61.

    Penfield W, Rasmussen T (1950) Secondary sensory and motor representation. Macmillan, New York

    Google Scholar 

  62. 62.

    Duffau H, Lopes M, Arthuis F, Bitar A, Sichez JP, Van Effenterre R et al (2005) Contribution of intraoperative electrical stimulations in surgery of low-grade gliomas: a comparative study between two series without (1985–96) and with (1996–2003) functional mapping in the same institution. J Neurol Neurosurg Psychiatry 76:845–851

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  63. 63.

    De Benedictis A, Moritz-Gasser S, Duffau H (2010) Awake mapping optimizes the extent of resection for low-grade gliomas in eloquent areas. Neurosurg 66(6):1074–1084

    Article  Google Scholar 

  64. 64.

    Asthagiri AR, Pouratian N, Sherman J, Ahmed G, Shaffrey ME (2007) Advances in brain tumor surgery. Neurol Clin 25(4):975–1003

    PubMed  Article  Google Scholar 

  65. 65.

    Berger MS, Deliganis AV, Dobbins J, Keles GE (1994) The effect of extent of resection on recurrence in patients with low grade cerebral hemisphere gliomas. Cancer 74:1784–1791

    CAS  PubMed  Article  Google Scholar 

  66. 66.

    Beez T, Boge K, Wager M, Whittle I, Fontaine D, Spena G, Braun S, Szelényi A, Bello L, Duffau H, Sabel M, European Low Grade Glioma Network (2013) Tolerance of awake surgery for glioma: a prospective European Low Grade Glioma Network multicenter study. Acta Neurochir 155(7):1301–1308

    PubMed  Article  Google Scholar 

  67. 67.

    Gras-Combe G, Moritz-Gasser S, Herbet G, Duffau H (2012) Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg 117(3):466–473

    PubMed  Article  Google Scholar 

  68. 68.

    Serletis D, Bernstein M (2007) Prospective study of awake craniotomy used routinely and nonselectively for supratentorial tumors. J Neurosurg 107(1):1–6

    PubMed  Article  Google Scholar 

  69. 69.

    De Witt Hamer PC, Hendriks EJ, Mandonnet E, Barkhof F, Zwinderman AH, Duffau H (2013) Resection probability maps for quality assessment of glioma surgery without brain location bias. PLoS One 6 8(9):e73353

    Article  Google Scholar 

  70. 70.

    Nossek E, Matot I, Shahar T, Barzilai O, Rapoport Y, Gonen T, Sela G, Grossman R, Korn A, Hayat D, Ram Z (2013) Intraoperative seizures during awake craniotomy: incidence and consequences: analysis of 477 patients. Neurosurg 73(1):135–140

    Article  Google Scholar 

  71. 71.

    Ozawa N, Muragaki Y, Nakamura R, Iseki H (2009) Identification of the pyramidal tract by neuronavigation based on intraoperative diffusion-weighted imaging combined with subcortical stimulation. Stereotac Func Neurosurg 87(1):18–24

    CAS  Article  Google Scholar 

  72. 72.

    Sacko O, Lauwers-Cances V, Brauge D, Sesay M, Brenner A, Roux FE (2011) Awake craniotomy vs surgery under general anesthesia for resection of supratentorial lesions. Neurosurg 68(5):1192–1198

    Google Scholar 

  73. 73.

    Majchrzak K, Kaspera W, Bobek-Billewicz B, Hebda A, Stasik-Pres G, Majchrzak H, Ładziński P (2012) The assessment of prognostic factors in surgical treatment of low-grade gliomas: a prospective study. Clin Neurol Neurosurg 114(8):1135–1144

    PubMed  Article  Google Scholar 

  74. 74.

    Robles SG, Gatignol P, Lehéricy S, Duffau H (2008) Long-term brain plasticity allowing a multistage surgical approach to World Health Organization Grade II gliomas in eloquent areas. J Neurosurg 109(4):615–624

    PubMed  Article  Google Scholar 

  75. 75.

    Ius T, Angelini E, Thiebaut de Schotten M, Mandonnet E, Duffau H (2011) Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage 56(3):992–1000

    PubMed  Article  Google Scholar 

  76. 76.

    Mandonnet E, Jbabdi S, Taillandier L, Galanaud D, Benali H, Capelle L, Duffau H (2007) Preoperative estimation of residual volume for WHO grade II glioma resected with intraoperative functional mapping. Neuro Oncol 9(1):63–69

    PubMed Central  PubMed  Article  Google Scholar 

  77. 77.

    Duffau H (2012) A new concept of diffuse (low-grade) glioma surgery. Adv Tech Stand Neurosurg 38:3–27

    CAS  PubMed  Google Scholar 

  78. 78.

    Bello L, Gallucci M, Fava M, Carrabba G, Giussani C, Acerbi F et al (2007) Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurg 60(1):67–80

    Article  Google Scholar 

  79. 79.

    Chacko AG, Thomas SG, Babu KS, Daniel RT, Chacko G, Prabhu K, Cherian V, Korula G (2013) Awake craniotomy and electrophysiological mapping for eloquent area tumours. Clin Neurol Neurosurg 115(3):329–334

    PubMed  Article  Google Scholar 

  80. 80.

    Danks RA, Aglio LS, Gugino LD, Black PM (2000) Craniotomy under local anesthesia and monitored conscious sedation for the resection of tumors involving eloquent cortex. J Neurooncol 49(2):131–139

    CAS  PubMed  Article  Google Scholar 

  81. 81.

    Ganslandt O, Behari S, Gralla J, Fahlbusch R, Nimsky C (2002) Neuronavigation: concept, techniques and applications. Neurol India 50(3):244–255

    CAS  PubMed  Google Scholar 

  82. 82.

    Haglund M, Berger M, Shamseldin M, Lettich E, Ojemann G (1994) Cortical localization of temporal lobe language sites in patients with gliomas. Neurosurgery 34:567–576

    CAS  PubMed  Article  Google Scholar 

  83. 83.

    Krishnan R, Raabe A, Hattingen E, Szelényi A, Yahya H, Hermann E, Zimmermann M, Seifert V (2004) Functional magnetic resonance imaging-integrated neuronavigation: correlation between lesion-to-motor cortex distance and outcome. Neurosurgery 55:904–914

    PubMed  Article  Google Scholar 

  84. 84.

    Pereira LC, Oliveira KM, L’Abbate GL, Sugai R, Ferreira JA, da Motta LA (2009) Outcome of fully awake craniotomy for lesions near the eloquent cortex: analysis of a prospective surgical series of 79 supratentorial primary brain tumors with long follow-up. Acta Neurochir 151(10):1215–1230

    PubMed  Article  Google Scholar 

  85. 85.

    Trinh VT, Fahim DK, Shah K, Tummala S, McCutcheon IE, Sawaya R, Suki D, Prabhu SS (2013) Subcortical injury is an independent predictor of worsening neurological deficits following awake craniotomy procedures. Neurosurgery 72(2):160–169

    PubMed  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giannantonio Spena.

Additional information

Comments

Antonella Castellano, Milan, Italy

This is an interesting overview of the current armamentarium the neurosurgeon is provided with in the care process of patients with intracranial gliomas. As widely illustrated by the authors, different tools are available at every stage of the management in order to enhance tumor resection while preserving brain functions.

The main issue regarding such an extensive amount of techniques and methodologies, along with surgeon and centre expertise, is whether any of those tools is more relevant than others, and which should be the hierarchy, if any could ever be established. As an example, functional imaging techniques such as fMRI and diffusion tractography can give precious and meaningful insights about the anatomo-functional organization at a single patient level; however, a deep knowledge of all the technical issues and the reliability of these data is mandatory to correctly use them in the perioperative and intraoperative setting. It should be kept in mind that these techniques cannot replace intraoperative stimulation in surgery of eloquent areas; they should be combined to improve subcortical mapping. Moreover, a thorough analysis on the impact of all these methodologies on the patient’s outcome, appropriately depicted and recorded, is mandatory and it should be pursued in every investigation on the topic.

The argument on the actual surgical strategies to be employed in glioma treatment gained interest. It has to be noted how the surgeon still represents the fulcrum of distinct tools, which must be mastered to provide the patient with the state-of-the-art care. In this setting, the appropriate performance of the surgical gestures has not to be minimized or neglected, since it represents the executive momentum where the preoperative and intraoperative data should merge to result effective for the patient.

Finally, this review could be regarded as a valuable depiction of the landscape which a neurosurgeon in training should deal with and has to be ready to learn for treatment of patients harboring a glioma.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Spena, G., Panciani, P.P. & Fontanella, M.M. Resection of supratentorial gliomas: the need to merge microsurgical technical cornerstones with modern functional mapping concepts. An overview. Neurosurg Rev 38, 59–70 (2015). https://doi.org/10.1007/s10143-014-0578-y

Download citation

Keywords

  • Brain neoplasms
  • Diagnostic imaging
  • Diffusion tensor imaging
  • Electric stimulation
  • Quality of life
  • Magnetic resonance imaging
  • Gliomas