Genome-wide identification of Ran GTPase family genes from wheat (T. aestivum) and their expression profile during developmental stages and abiotic stress conditions

Abstract

Maintenance of growth is important for sustaining yield under stress conditions. Hence, identification of genes involved in cell division and growth under abiotic stress is utmost important. Ras-related nuclear protein (Ran) is a small GTPase required for nucleocytoplasmic transport, mitotic progression, and nuclear envelope assembly in plants. In the present study, two Ran GTPase genes TaRAN1 and TaRAN2 were identified though genome-wide analysis in wheat (T. aestivum). Comparative analysis of Ran GTPases from wheat, barley, rice, maize, sorghum, and Arabidopsis revealed similar gene structure within phylogenetic clades and highly conserved protein structure. Expression analysis from expVIP platform showed ubiquitous expression of TaRAN genes across tissues and developmental stages. Under biotic and abiotic stresses, TaRAN1 expression was largely unaltered, while TaRAN2 showed stress specific response. In qRT-PCR analysis, TaRAN1 showed significantly higher expression as compared to TaRAN2 in shoot and root at seedling, vegetative, and reproductive stages. During progressive drought stress, TaRAN1 and TaRAN2 expression increase during early stress and restored to control level expression at higher stress levels in shoot. The steady-state level of transcripts was maintained to that of control in roots under drought stress. Under cold stress, expression of both the TaRAN genes decreased significantly at 3 h and became similar to control at 6 h in shoots, while salt stress significantly reduced the expression of TaRAN genes in shoots. The analysis suggests differential regulation of TaRAN genes under developmental stages and abiotic stresses. Delineating the molecular functions of Ran GTPases will help unravel the mechanism of stress induced growth inhibition in wheat.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Barrs HD, Weatherley PE (1962) A re-examination of the relative turgidity technique for estimating water deficits in leaves. Aust J Biol Sci 15(3):413–428. https://doi.org/10.1071/BI9620413

    Article  Google Scholar 

  2. Borrill P, Ramirez-Gonzalez R, Uauy C (2016) expVIP: a customizable RNA-seq data analysis and visualization platform. Plant Physiol 170:2172–2186. https://doi.org/10.1104/pp.15.01667

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. Chen N, Xu Y, Wang X, Du C, Du J, Yuan M, Xu Z, Chong K (2011) OsRAN2, essential for mitosis, enhances cold tolerance in rice by promoting export of intranuclear tubulin and maintaining cell division under cold stress. Plant Cell Environ 34:52–64. https://doi.org/10.1111/j.1365-3040.2010.02225.x

    CAS  Article  PubMed  Google Scholar 

  4. Clarke PR, Zhang C (2008) Spatial and temporal coordination of mitosis by Ran GTPase. Nat Rev Mol Cell Biol 9:464–477. https://doi.org/10.1038/nrm2410

    CAS  Article  PubMed  Google Scholar 

  5. Finn RD, Clements J, Arndt W, Miller BL, Wheeler TJ, Schreiber F, Bateman A, Eddy SR (2015) HMMER web server: 2015 update. Nucleic Acids Res 43:W30–W38. https://doi.org/10.1093/nar/gkv397

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. Haizel T, Merkle T, Pay A, Fejes E, Nagy F (1997) Characterization of proteins that interact with the GTP-bound form of the regulatory GTPase Ran in Arabidopsis. Plant J 11:93–103. https://doi.org/10.1046/j.1365-313x.1997.11010093.x

    CAS  Article  PubMed  Google Scholar 

  7. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297. https://doi.org/10.1093/bioinformatics/btu817

    Article  PubMed  PubMed Central  Google Scholar 

  8. Jiang SY, Ramachandran S (2006) Comparative and evolutionary analysis of genes encoding small GTPases and their activating proteins in eukaryotic genomes. Physiol Genomics 24:235–251. https://doi.org/10.1152/physiolgenomics.00210.2005

    CAS  Article  PubMed  Google Scholar 

  9. Kahn RA, Der CJ, Bokoch GM (1992) The ras superfamily of GTP-binding proteins: guidelines on nomenclature. FASEB J 6:2512–2513. https://doi.org/10.1096/fasebj.6.8.1592203

    CAS  Article  PubMed  Google Scholar 

  10. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  Article  Google Scholar 

  11. Letunic I, Doerks T, Bork P (2015) SMART: recent updates, new developments and status in 2015. Nucleic Acids Res 43:D257–D260. https://doi.org/10.1093/nar/gku949

    CAS  Article  PubMed  Google Scholar 

  12. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT Method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262

    CAS  Article  Google Scholar 

  13. Lounsbury KM, Richards SA, Carey KL, Macara IG (1996) Mutations within the Ran/TC4 GTPase. Effects on regulatory factor interactions and subcellular localization. J Biol Chem 271:32834–32841. https://doi.org/10.1074/jbc.271.51.32834

    CAS  Article  PubMed  Google Scholar 

  14. Lycett G (2008) The role of Rab GTPases in cell wall metabolism. J Exp Bot 59:4061–4074. https://doi.org/10.1093/jxb/ern255

    CAS  Article  PubMed  Google Scholar 

  15. Ma L, Hong Z, Zhang Z (2007) Perinuclear and nuclear envelope localizations of Arabidopsis Ran proteins. Plant Cell Rep 26:1373–1382. https://doi.org/10.1007/s00299-007-0367-y

    CAS  Article  PubMed  Google Scholar 

  16. Molendijk AJ, Ruperti B, Palme K (2004) Small GTPases in vesicle trafficking. Curr Opin Plant Biol 7:694–700. https://doi.org/10.1016/j.pbi.2004.09.014

    CAS  Article  PubMed  Google Scholar 

  17. Moore MS (1998) Ran and nuclear transport. J Biol Chem 273:22857–22860. https://doi.org/10.1074/jbc.273.36.22857

    CAS  Article  PubMed  Google Scholar 

  18. Nagawa S, Xu T, Lin D, Dhonukshe P, Zhang X, Friml J, Scheres B, Fu Y, Yang Z (2012) ROP GTPase-dependent actin microfilaments promote PIN1 polarization by localized inhibition of clathrin-dependent endocytosis. PLoS Biol 10:e1001299. https://doi.org/10.1371/journal.pbio.1001299

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. Nibau C, Wu HM, Cheung AY (2006) RAC/ROP GTPases: 'hubs' for signal integration and diversification in plants. Trends Plant Sci 11:309–315. https://doi.org/10.1016/j.tplants.2006.04.003

    CAS  Article  PubMed  Google Scholar 

  20. Paolacci AR, Tanzarella OA, Porceddu E, Ciaffi M (2009) Identification and validation of reference genes for quantitative RT-PCR normalization in wheat. BMC Mol Biol 10:11. https://doi.org/10.1186/1471-2199-10-11

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. Quimby BB, Dasso M (2003) The small GTPase Ran: interpreting the signs. Curr Opin Cell Biol 15:338–344. https://doi.org/10.1016/s0955-0674(03)00046-2

    CAS  Article  PubMed  Google Scholar 

  22. Ren M, Drivas G, D'Eustachio P, Rush MG (1993) Ran/TC4: a small nuclear GTP-binding protein that regulates DNA synthesis. J Cell Biol 120:313–323. https://doi.org/10.1083/jcb.120.2.313

    CAS  Article  PubMed  Google Scholar 

  23. Rojas AM, Fuentes G, Rausell A, Valencia A (2012) The Ras protein superfamily: evolutionary tree and role of conserved amino acids. J Cell Biol 196:189–201. https://doi.org/10.1083/jcb.201103008

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Takai Y, Sasaki T, Matozaki T (2001) Small GTP-binding proteins. Physiol Rev 81:153–208. https://doi.org/10.1152/physrev.2001.81.1.153

    CAS  Article  PubMed  Google Scholar 

  25. Toma-Fukai S, Shimizu T (2019) Structural insights into the regulation mechanism of small GTPases by GEFs. Molecules 24(18):3308. https://doi.org/10.3390/molecules24183308

    Article  PubMed Central  Google Scholar 

  26. Vernoud V, Horton AC, Yang Z, Nielsen E (2003) Analysis of the small GTPase gene superfamily of Arabidopsis. Plant Physiol 131:1191–1208. https://doi.org/10.1104/pp.013052

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. Wang L, Ruan YL (2013) Regulation of cell division and expansion by sugar and auxin signaling. Front Plant Sci 4:163. https://doi.org/10.3389/fpls.2013.00163

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wang X, Xu Y, Han Y, Bao S, Du J, Yuan M, Xu Z, Chong K (2006) Overexpression of RAN1 in rice and Arabidopsis alters primordial meristem, mitotic progress, and sensitivity to auxin. Plant Physiol 140:91–101. https://doi.org/10.1104/pp.105.071670

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. Wu JY, Shen JR, Mao XZ, Liu KD, Wei LP, Liu PW, Yang GS (2007) Isolation and analysis of differentially expressed genes in dominant genic male sterility (DGMS) Brassica napus L. using substractive PCR and cDNA microarray. Plant Sci 172:204–211

    CAS  Article  Google Scholar 

  30. Xu P, Cai W (2014) RAN1 is involved in plant cold resistance and development in rice (Oryza sativa). J Exp Bot 65:3277–3287. https://doi.org/10.1093/jxb/eru178

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  31. Xu P, Zang A, Chen H, Cai W (2016) The small G protein AtRAN1 regulates vegetative growth and stress tolerance in Arabidopsis thaliana. PLoS One 11:e0154787. https://doi.org/10.1371/journal.pone.0154787

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Yang Z (2002) Small GTPases: versatile signaling switches in plants. Plant Cell 14(Suppl):S375–S388. https://doi.org/10.1105/tpc.001065

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Yu CS, Chen YC, Lu CH, Hwang JK (2006) Prediction of protein subcellular localization. Proteins 64:643–651. https://doi.org/10.1002/prot.21018

    CAS  Article  PubMed  Google Scholar 

  34. Zang AP, Xu XJ, Neill S, Cai WM (2010) Overexpression of OsRAN2 in rice and Arabidopsis renders trans-genic plants hypersensitive to salinity and osmotic stress. J Exp Bot 61:777–789. https://doi.org/10.1093/jxb/erp341

    CAS  Article  PubMed  Google Scholar 

  35. Zhao Q, Leung S, Corbett AH, Meier I (2006) Identification and characterization of the Arabidopsis orthologs of nuclear transport factor 2, the nuclear import factor of Ran. Plant Physiol 140:869–878. https://doi.org/10.1104/pp.105.075499

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. The International Wheat Genome Sequencing Consortium (IWGSC), Appels R, Eversole K, Stein N, Feuillet C, Keller B, Rogers J, Pozniak CJ, Choulet F, Distelfeld A, Poland J, Ronen G. et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361(6403):eaar7191. https://doi.org/10.1126/science.aar7191

Download references

Acknowledgments

SC gratefully acknowledges ICAR for JRF fellowship.

Funding

This study was funded by ICAR-National Institute for Plant Biotechnology, New Delhi.

Author information

Affiliations

Authors

Contributions

Experimentation by SC; data analysis and manuscript editing by M; in silico analysis by SKM and MD; conceptualization by MD; manuscript writing JCP and MD. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Monika Dalal.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

ESM 1

(DOCX 331 kb).

ESM 2

(XLSX 22 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choudhury, S., Mansi, Muthusamy, S.K. et al. Genome-wide identification of Ran GTPase family genes from wheat (T. aestivum) and their expression profile during developmental stages and abiotic stress conditions. Funct Integr Genomics (2021). https://doi.org/10.1007/s10142-021-00773-0

Download citation

Keywords

  • Moisture deficit
  • Ras-related nuclear protein
  • SbRAN
  • SDP
  • Small GTPases
  • ZmRAN