Pomc Plays an Important Role in Sexual Size Dimorphism in Tilapia

Abstract

Sexual dimorphism is common across the animal kingdom. Knowledge of the mechanisms of sexual size dimorphism is limited although it is important in biology and aquaculture. Tilapia is the common name for ~ 100 species of cichlid fish. Some are important aquaculture species and males outgrow females. To gain novel insights into the mechanisms underlying sexual size dimorphism, we analyzed the differences of brain transcriptomes between males and females in Mozambique tilapia and studied the function of the pro-opiomelanocortin (Pomc) gene in tilapia and zebrafish. The transcriptome analysis identified 123, 55, and 2706 sex-biased genes at 5, 30, and 90 dph (days post-hatch), respectively, indicating sexual dimorphism of gene expressions in the brain. The expression of Pomc in the tilapia brain was a female-biased at 30, 90, and 120 dph. An analysis of the DNA sequence located upstream of the tilapia Pomc transcriptional start site identified two estrogenic response elements. In vitro luciferase assay of the two elements revealed that β-estradiol significantly enhanced the expression of luciferase activity, suggesting that the expression of Pomc is mediated by estrogen. We knocked out Pomc in zebrafish using Crispr/Cas-9. The Pomc-knockout zebrafish showed faster growth and higher sensitivity to feeding as compared to the wild-type fish. Taken together, our results indicate that Pomc contributes to sexual size dimorphism and suggest that the high estrogen level in females promotes the expression of Pomc and suppresses feeding in female tilapias, which leads to the slower growth of female tilapias.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Anders S, Pyl PT, Huber W (2015) HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31:166–169

    CAS  Article  Google Scholar 

  2. Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30:1473–1475

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  3. Biebermann H, Castañeda TR, Van Landeghem F, Von Deimling A, Escher F, Brabant G, Hebebrand J, Hinney A et al (2006) A role for β-melanocyte-stimulating hormone in human body-weight regulation. Cell Metabol 3:141–146

    CAS  Article  Google Scholar 

  4. Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  5. Cawley NX, Li ZJ, Loh YP (2016) 60 YEARS OF POMC: regulation of feeding and energy homeostasis by α-MSH. J Mol Endocrinol 56:T157–T174

    Article  CAS  Google Scholar 

  6. Chen Y, Knight ZA (2016) Making sense of the sensory regulation of hunger neurons. BioEssays 38:316–324

    PubMed  PubMed Central  Article  Google Scholar 

  7. Chervinski J (1965) Sexual dimorphism in tilapia. Nature 208:703

    Article  Google Scholar 

  8. Conte MA, Joshi R, Moore EC, Nandamuri SP, Gammerdinger WJ, Roberts RB, Carleton KL, Lien S et al (2019) Chromosome-scale assemblies reveal the structural evolution of African cichlid genomes. GigaScience 8:giz030

  9. D’amato ME, Esterhuyse MM, Van DW, Ben CW, Brink D, Volckaert FaM (2007) Hybridization and phylogeography of the Mozambique tilapia Oreochromis mossambicus in southern Africa evidenced by mitochondrial and microsatellite DNA genotyping. Conserv Genet 8:475–488

  10. Dan NC, Little DC (2000) The culture performance of monosex and mixed-sex new-season and overwintered fry in three strains of Nile tilapia (Oreochromis niloticus) in northern Vietnam. Aquaculture 184:221–231

    Article  Google Scholar 

  11. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, Batut P, Chaisson M et al (2013) STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29:15–21

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  12. Fairbairn DJ, Blanckenhorn WU, Székely T (2007) Sex, size and gender roles: evolutionary studies of sexual size dimorphism: Oxford University Press

  13. Gratacap RL, Wargelius A, Edvardsen RB, Houston RD (2019) Potential of genome editing to improve aquaculture breeding and production. Trends Genet 35:672–684

    CAS  PubMed  Article  Google Scholar 

  14. Hedrick AV, Temeles EJ (1989) The evolution of sexual dimorphism in animals: hypotheses and tests. Trends Ecol Evol 4:136–138

    CAS  PubMed  Article  Google Scholar 

  15. Hilbert ZA, Kim DH (2017) Sexually dimorphic control of gene expression in sensory neurons regulates decision-making behavior in C. elegans. Elife 6:e21166

  16. Ho J, Tumkaya T, Aryal S, Choi H, Claridge-Chang A (2019) Moving beyond P values: data analysis with estimation graphics. Nat Methods 16:565–566

  17. Kobayashi Y, Nagahama Y, Nakamura M (2013) Diversity and plasticity of sex determination and differentiation in fishes. Sexual Devel 7:115–125

    CAS  Article  Google Scholar 

  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  19. Lin G, Thevasagayam NM, Wan ZY, Ye B, Yue GH (2019) Transcriptome analysis identified genes for growth and omega-3/6 ratio in saline tilapia. Front Genet 10:244

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  20. Liu F, Sun F, Li J, Xia JH, Lin G, Tu RJ, Yue GH (2013) A microsatellite-based linkage map of salt tolerant tilapia (Oreochromis mossambicus x Oreochromis spp.) and mapping of sex-determining loci. BMC Genomics 14:58

  21. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

  22. Lohr H, Hess S, Pereira MMA, Reinoss P, Leibold S, Schenkel C, Wunderlich CM, Kloppenburg P et al (2018) Diet-induced growth is regulated via acquired leptin resistance and engages a pomc-somatostatin-growth hormone circuit. Cell Rep 23:1728–1741

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  24. Mair GC, Abucay JS, Beardmore JA, Skibinski DO (1995) Growth performance trials of genetically male tilapia (GMT) derived from YY-males in Oreochromis niloticus L.: on station comparisons with mixed sex and sex reversed male populations. Aquaculture 137:313–323

    Article  Google Scholar 

  25. Marsh DJ, Hollopeter G, Huszar D, Laufer R, Yagaloff KA, Fisher SL, Burn P, Palmiter RD (1999) Response of melanocortin–4 receptor–deficient mice to anorectic and orexigenic peptides. Nat Genet 21:119

    CAS  PubMed  Article  Google Scholar 

  26. Mi H, Muruganujan A, Ebert D, Huang X, Thomas PD (2019) PANTHER version 14: more genomes, a new PANTHER GO-slim and improvements in enrichment analysis tools. Nucleic Acids Res 47:D419-d426

    CAS  PubMed  Article  Google Scholar 

  27. Millington GW (2007) The role of proopiomelanocortin (POMC) neurones in feeding behaviour. Nutr Metabol 4:18–18

    Article  CAS  Google Scholar 

  28. Molcho J, Levy T, Benet A, Naor A, Savaya A, Manor R, Abramov A, Aflalo ED et al (2020) Three generations of prawns without the Z chromosome: viable WW Macrobrachium rosenbergii all-female populations in polyculture with Oreochromis niloticus. Aquaculture 515:734531

    Article  Google Scholar 

  29. Morford JJ, Wu S, Mauvais-Jarvis F (2018) The impact of androgen actions in neurons on metabolic health and disease. Mol Cell Endocrinol 465:92–102

    CAS  PubMed  Article  Google Scholar 

  30. Ozsolak F, Milos PM (2011) RNA sequencing: advances, challenges and opportunities. Nat Rev Genet 12:87–98

    CAS  PubMed  Article  Google Scholar 

  31. Park J, Bae S, Kim J-S (2015) Cas-Designer: a web-based tool for choice of CRISPR-Cas9 target sites. Bioinformatics 31:4014–4016

    CAS  PubMed  Article  Google Scholar 

  32. Parker GA (1992) The evolution of sexual size dimorphism in fish. J Fish Biol 41:1–20

    Article  Google Scholar 

  33. Perez-Sanchez J (2000) The involvement of growth hormone in growth regulation, energy homeostasis and immune function in the gilthead sea bream (Sparus aurata): a short review. Fish Physiol Biochem 22:135–144

    CAS  Article  Google Scholar 

  34. Raffan E, Dennis RJ, O’donovan CJ, Becker JM, Scott RA, Smith SP, Withers DJ, Wood CJ, et al (2016) A A deletion in the canine pomc gene is associated with weight and appetite in obesity-prone labrador retriever dogs. Cell Metabol 23:893–900

    CAS  Article  Google Scholar 

  35. Reinecke M, Björnsson BT, Dickhoff WW, Mccormick SD, Navarro I, Power DM, Gutiérrez J (2005) Growth hormone and insulin-like growth factors in fish: where we are and where to go. Gen Comp Endocrinol 142:20–24

    CAS  PubMed  Article  Google Scholar 

  36. Scott AG, Penman DJ, Beardmore JA, Skibinski DOF (1989) The ‘YY’ supermale in Oreochromis niloticus (L.) and its potential in aquaculture. Aquaculture 78:237–251

    Article  Google Scholar 

  37. Shen Y, Yue G (2019) Current status of research on aquaculture genetics and genomics-information from ISGA 2018. Aqua Fish 4:43–47

    Article  Google Scholar 

  38. Smith CJ, Haley SR (1988) Steroid profiles of the female tilapia, Oreochromis mossambicus, and correlation with oocyte growth and mouthbrooding behavior. Gen Comp Endocrinol 69:88–98

    CAS  PubMed  Article  Google Scholar 

  39. Tao WJ, Chen JL, Tan DJ, Yang J, Sun LN, Wei J, Conte MA, Kocher TD et al (2018) Transcriptome display during tilapia sex determination and differentiation as revealed by RNA-Seq analysis. BMC Genomics 19:363

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  40. Tao WJ, Yuan J, Zhou L, Sun L, Sun Y, Yang S, Li M, Zeng S et al (2013) Characterization of gonadal transcriptomes from Nile tilapia (Oreochromis niloticus) reveals differentially expressed genes. PLoS One 8:e63604

  41. Taslima K, Wehner S, Taggart JB, De Verdal H, Benzie JA, Bekaert M, Mcandrew BJ, Penman DJ (2020) Sex determination in the GIFT strain of tilapia is controlled by a locus in linkage group 23. BMC Genet 21:1–15

    Article  CAS  Google Scholar 

  42. Wan ZY, Lin G, Yue G (2019) Genes for sexual body size dimorphism in hybrid tilapia (Oreochromis sp. x Oreochromis mossambicus). Aqua Fish 4:231–238

    Article  Google Scholar 

  43. Wang C, He Y, Xu P, Yang Y, Saito K, Xia Y, Yan X, Hinton A Jr et al (2018) TAp63 contributes to sexual dimorphism in POMC neuron functions and energy homeostasis. Nat Commun 9:1544

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. Wang P, Zheng M, Liu J, Liu Y, Lu J, Sun X (2016) Sexually dimorphic gene expression associated with growth and reproduction of Tongue Sole (Cynoglossus semilaevis) revealed by brain transcriptome analysis. Intern J Mol Sci 17:1402

    Article  CAS  Google Scholar 

  45. Wang Y, Yu Y, Li SH, Zhang XJ, Xiang JH, Li FH (2020) Specific transcriptome sequencing of zoea i larvae and identification of sex-linked genes using bulked segregant analysis in pacific white shrimp Litopenaeus vannamei. Mar Biotechnol 22:423–432

    CAS  Article  Google Scholar 

  46. Webster CD, Lim C (2006). Tilapia: biology, culture, and nutrition: CRC Press

  47. Williams TM, Carroll SB (2009) Genetic and molecular insights into the development and evolution of sexual dimorphism. Nat Rev Genet 10:797

    CAS  PubMed  Article  Google Scholar 

  48. Wu JJ, Zhou YL, Wang ZW, Li GH, Jin FP, Cui LL, Gao HT, Li XP et al (2019) Comparative transcriptome analysis reveals differentially expressed genes and signaling pathways between male and female red-tail catfish (Mystus wyckioides). Mar Biotechnol 21:463–474

    CAS  Article  Google Scholar 

  49. Yaswen L, Diehl N, Brennan MB, Hochgeschwender U (1999) Obesity in the mouse model of pro-opiomelanocortin deficiency responds to peripheral melanocortin. Nat Med 5:1066

    CAS  PubMed  Article  Google Scholar 

  50. Yin L, Jao LE, Chen W (2015) Generation of Targeted Mutations in Zebrafish Using the CRISPR/Cas System. VEGF Signaling. 2015/08/20 ed. NY: Springer

  51. Yu G, Wang LG, Han Y, He QY (2012) clusterProfiler: an R package for comparing biological themes among gene clusters. Omics 16:284–287

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  52. Yue GH, Orban L (2005) A simple and affordable method for high-throughput DNA extraction from animal tissues for polymerase chain reaction. Electrophoresis 26:3081–3083

    CAS  PubMed  Article  Google Scholar 

  53. Zhu X, Xu Y, Yu S, Lu L, Ding M, Cheng J, Song G, Gao X et al (2014) An efficient genotyping method for genome-modified animals and human cells generated with CRISPR/Cas9 system. Sci Rep 4:6420

    CAS  PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This study is part of the PhD thesis of Zi Yi Wan, which was supported by Temasek Life Sciences Laboratory and Nanyang Technological University, Singapore. We thank all our lab members for supporting the PhD study of Zi Yi Wan.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to V. C. L. Lin or Yue Gen Hua.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wan, Z.Y., Lin, V.C.L. & Hua, Y.G. Pomc Plays an Important Role in Sexual Size Dimorphism in Tilapia. Mar Biotechnol (2021). https://doi.org/10.1007/s10126-020-10015-2

Download citation

Keywords

  • Fish
  • Sex
  • Dimorphism
  • RNA-seq
  • Pomc
  • Hormone