Characterization of Macroscopic Colony-Forming Filamentous Cyanobacteria from Okinawan Coasts as Potential Sources of Bioactive Compounds

Abstract

Marine macroscopic colony-forming filamentous (MMCFF) cyanobacteria are considered as prolific producers of bioactive compounds. Thus, knowledge of the diversity of MMCFF cyanobacteria as related to bioactive compound production has become very important. However, basic taxonomic studies of MMCFF cyanobacteria are lacking. Many cyanobacterial taxa are still misidentified or undescribed. In this study, a total of 32 cyanobacterial colonies from nine coastal regions of Okinawa Prefecture were investigated for a diversity assessment. A polyphasic approach including morphological and molecular studies based on 16S rRNA gene sequences was performed to characterize Okinawan MMCFF cyanobacteria. Both morphological and molecular phylogenetic results showed that MMCFF cyanobacteria from Okinawan coasts are very diverse. We found morphotypes of Lyngbya-like, Phormidium-like, and Leptolyngbya-like groups among Okinawan cyanobacterial samples. Genetically, samples were distributed in various clades in the phylogenetic tree, including within Moorena, Okeania, Caldora, Neolyngbya, Dapis, as well as several unknown clades. In addition, cytotoxic activities of three samples from Kiyan coast were tested against HeLa cells. All three crude extracts of these samples showed strong cytotoxic activity with IC50 < 1 μg/ml.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Barrios-Llerena ME, Burja AM, Wright PC (2007) Genetic analysis of polyketide synthase and peptide synthetase genes in cyanobacteria as a mining tool for secondary metabolites. J Ind Microbiol Biotechnol 34:443–456

    CAS  PubMed  Google Scholar 

  2. Blunt JW, Copp BR, Keyzers RA, Munro MHG, Prinsep MR (2017) Marine natural products. J Nat Prod Rep 34:235–294

    CAS  Google Scholar 

  3. Boyer SL, Flechtner VR, Johansen JR (2001) Is the 16S-23S rRNA internal transcribed spacer region a good tool for use in molecular systematics and population genetics? A case study in cyanobacteria. Mol Biol Evol 18:1057–1069

    CAS  PubMed  Google Scholar 

  4. Caires TA, Lyra GM, Hentschke GS, Pedrini AG, Sant’Anna GL, Marcos J, Nunes JMC (2018a) Neolyngbya gen. nov. (Cyanobacteria, Oscillatoriaceae): a new filamentous benthic marine taxon widely distributed along the Brazilian coast. Mol Phylogenet Evol 120:196–211

    PubMed  Google Scholar 

  5. Caires TA, Lyra GM, Hentschke GS, da Silva AMS, de Araújo VL, Sant’Anna CL, Nunes JMC (2018b) Polyphasic delimitation of a filamentous marine genus, Capillus gen. nov. (Cyanobacteria, Oscillatoriaceae) with the description of two Brazilian species. Algae 33(4):291–304

    CAS  Google Scholar 

  6. Cassamatta D, Stanić D, Gantar M, Richardson LL (2012) Characterization of Roseofilum reptotaenium (Oscillatoriales, Cyanobacteria) gen. et. sp. nov. isolated from Caribbean black band disease. Phycologia 51:489–499

    Google Scholar 

  7. Castenholz RW (2001) Phylum BX. Cyanobacteria oxygenic photosynthetic bacteria. In: Boone DR, Castenholz RW, Garrity GM (eds) Bergey’s manual of systematic bacteriology. Springer, New York, pp 473–553

    Google Scholar 

  8. Charpy L, Palinska KA, Casareto B, Langlade MJ, Suzuki Y, Abed RMM, Golubic S (2010) Dinitrogen-fixing cyanobacteria in microbial mats of two shallow coral reef ecosystem. Microb Ecol 59:174–186

    CAS  PubMed  Google Scholar 

  9. Charpy L, Casareto BE, Langlade MJ, Suzuki Y (2012) Cyanobacteria in coral reef ecosystem: a review. J Mar Biol 2012:1–9

    Google Scholar 

  10. Engene N, Coates RC, Gerwick WH (2010) 16S rRNA gene heterogeneity in the filamentous marine cyanobacterial genus Lyngbya. J Phycol 46:591–601

    CAS  Google Scholar 

  11. Engene N, Choi H, Esquenazi E, Rottacker EC, Ellisman MH, Dorrestein PC, Gerwick WH (2011) Underestimated biodiversity as a major explanation for the perceived prolific secondary metabolite capacity of the cyanobacterial genus Lyngbya. Environ Microbiol 13:1601–1610

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Engene N, Rottacker EC, Kaštovskỳ J, Byrum T, Choi H, Ellisman MH, Komárek J, Gerwick WH (2012) Moorea producens gen. nov., sp. nov. and Moorea bouillonii comb. nov, tropical marine cyanobacteria rich in bioactive secondary metabolites. Int J Syst Evol Microbiol 62:1171–1178

    PubMed  PubMed Central  Google Scholar 

  13. Engene N, Paul VJ, Byrum T, Gerwick WH, Thor A, Ellisman MH (2013) Five chemically rich species of tropical marine cyanobacteria of the genus Okeania gen. nov. (Oscillatoria, Cyanoprokaryota). J Phycol 49:1095–1106

    PubMed  Google Scholar 

  14. Engene N, Tornholm A, Salvador-Reyes LA, Luesch H, Paul VJ (2015) Caldora penicillata gen. nov. comb. nov. (Cyanobacteria), a pantropical marine species with biomedical relevance. J Phycol 51:670–681

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Engene N, Tornholm A, Paul VJ (2018) Uncovering cryptic diversity of Lyngbya: the new tropical marine cyanobacterial genus Dapis (Oscillatoriales). J Phycol 54:435–446

    PubMed  Google Scholar 

  16. Gerwick WH, Moore BS (2012) Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol 19:85–98

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Graham LE, Wilcox LW (2000) Algae. Prentice Hall, Upper Saddle River 640 pp

    Google Scholar 

  18. Harrigan GG, Luesch H, Yoshida WY, Moore RE, Nagle DG, Paul VJ, Mooberry SM, Corbett TH, Valeriote FA (1998) Symplostatin: a dolastatin 10 analogue from the marine cyanobacterium Symploca hydnoides. J Nat Prod 61:1075–1077

    CAS  PubMed  Google Scholar 

  19. Iwasaki A, Tadenuma T, Sumimoto S, Ohshiro T, Ozaki K, Kobayashi K, Teruya T, Tomoda H, Suenaga K (2017) Biseokeaniamides A, B, and C, sterol o-acyltransferase inhibitors from an Okeania sp. marine cyanobacterium. J Nat Prod 80:1161–1166

    CAS  PubMed  Google Scholar 

  20. Johansen JR, Kovacik L, Casamatta DA, Fučiková K, Kaštovský J (2011) Utility of 16S-23S ITS sequence and secondary structure for recognition of intrageneric and intergeneric limits within cyanobacterial taxa: Leptolyngbya corticola sp. nov. (Pseudanabaenaceae, Cyanobacteria). Nova Hedwigia 92:283–302

    Google Scholar 

  21. Komárek J (2006) Cyanobacterial taxonomy: current problems and prospects for the integration of traditional and molecular approaches. Algae 21:349–375

    Google Scholar 

  22. Komárek J, Anagnostidis K (2005) Cyanoprokaryota 2. Teil: Oscillatoriales. In: Budel B, Krienitz L, Gärtner G, Schagerl M (eds) Sußwasserflora von Mitteleuropa, 19/2. Elsevier, Heidelberg, p 759

    Google Scholar 

  23. Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Kwan JC, Eksioglu EA, Liu C, Paul VJ, Luesch H (2009) Grassystatins A-C from marine cyanobacteria, potent cathepsin E inhibitors that reduce antigen presentation. J Med Chem 52:5732–5747

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Kwan JC, Ratnayake R, Abboud KA, Paul VJ, Luesch H (2010) Grassypeptolides A-C, cytotoxic bis-thiazoline containing marine cyclodepsipeptides. J Org Chem 75:8012–8023

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Lopez JAV, Al-Lihaibi SS, Alarif WM, Abdel-Lateff A, Nogata Y, Washio K, Morikawa M, Okino T (2016) Wewakazole B, a cytotoxic cyanobactin from the cyanobacterium Moorea producens collected in the Red Sea. J Nat Prod 79:1213–1218

    CAS  PubMed  Google Scholar 

  27. Luesch H, Moore RE, Paul VJ, Mooberry SL, Corbett TH (2001) Isolation of dolastatin 10 from the marine cyanobacterium Symploca species VP642 and total stereochemistry and biological evaluation of its analogue symplostatin 1. J Nat Prod 64:907–910

    CAS  PubMed  Google Scholar 

  28. Malone CFS, Rigonato J, Laughinghouse HD, Schmidt ÉC, Bouzon ZL, Wilmotte A, Fiore MF (2015) Cephalothrix gen. nov. (Cyanobacteria): towards an intraspecific phylogenetic evaluation by multilocus analyses. Int J Syst Evol Microbiol 65:2993–3007

    CAS  Google Scholar 

  29. Martins MD, Branco LHZ (2016) Potamolinea gen. nov. (Oscillatoriales, Cyanobacteria): a phylogenetically and ecologically coherent cyanobacterial genus. Int J Syst Evol Microbiol 66:3632–3641

    CAS  PubMed  Google Scholar 

  30. McGregor GB, Sendall BC (2015) Phylogeny and toxicology of Lyngbya wollei (Cyanobacteria, Oscillatoriales) from North-Eastern Australia, with a description of Microseira gen. nov. J Phycol 51:109–119

    CAS  PubMed  Google Scholar 

  31. Murakami A, Miyashita H, Iseki M, Adachi K, Mimuro M (2004) Chlorophyll d in an epiphytic cyanobacterium of red algae. Science 303(5664):1633

    CAS  PubMed  Google Scholar 

  32. Nakagawa M, Takamura Y, Yagi O (1987) Isolation and characterization of the slime from a cyanobacterium, Microcystis aeruginosa K-3A. Agric Biol Chem 51:329–337

    CAS  Google Scholar 

  33. Nielan BA, Jacobs D, DelDot T, Blackall LL, Hawkins PR, Cox PT, Goodman AE (1997) rRNA sequences of evolutionary relationship among toxic and nontoxic cyanobacteria of the genus Microcystis. Int J Syst Bacteriol 47:693–697

    Google Scholar 

  34. Nunnery JK, Mevers E, Gerwick WH (2010) Biologically active secondary metabolites from marine cyanobacteria. Curr Opin Biotechnol 21:1–7

    Google Scholar 

  35. Ogawa H, Iwasaki A, Sumimoto S, Kanamori Y, Ohno O, Iwatsuki M, Ishiyama A, Hokari R, Otoguro K, Omura S, Suenaga K (2016) Janadolide, a cyclic polyketide-peptide hybrid possessing a tert-butyl group from Okeania sp. marine cyanobacterium. J Nat Prod 79:1862–1866

    CAS  PubMed  Google Scholar 

  36. Ogawa H, Iwasaki A, Sumimoto S, Iwatsuki M, Ishiyama A, Hokiari R, Otoguro K, Omura S, Suenaga K (2017) Isolation and total synthesis of hoshinolactam, an antitrypanosomal lactam from a marine cyanobacterium. Org Lett 19:890–893

    CAS  PubMed  Google Scholar 

  37. Osborne NJT, Webb PM, Shaw GR (2001) The toxins of Lyngbya majuscula and their human and ecological health effects. Environ Int 27:381–392

    CAS  PubMed  Google Scholar 

  38. Paerl HW, Paul VJ (2012) Climate change: links to global expansion of harmful cyanobacteria. Water Res 46:1349–1363

    CAS  PubMed  Google Scholar 

  39. Paul VJ, Thacker RW, Banks K (2005) Benthic cyanobacterial bloom impacts the reefs of South Florida (Broward County, USA). Coral Reefs 24:693–697

    Google Scholar 

  40. Paul VJ, Arthur KE, Ritson-Williams R, Ross C, Sharp K (2007) Chemical defenses: from compounds to communities. Biol Bull (Woods Hole) 213:226–251

    CAS  Google Scholar 

  41. Rippka R (1988) Isolation and purification of cyanobacteria. Methods Enzymol 167:3–27

    CAS  PubMed  Google Scholar 

  42. Sciuto K, Andreoli C, Rascio N, La Rocca N, Moro I (2012) Polyphasic approach and typification of selected Phormidium strains (Cyanobacteria). Cladistics 28:357–374

    Google Scholar 

  43. Sharp K, Arthur KE, Gu L, Ross C, Harrison G, Gunasekera SP, Meickle T (2009) Phylogenetic and chemical diversity of three chemotypes of bloom-forming Lyngbya species (Cyanobacteria: Oscillatoriales) from reefs of southern Florida. Appl Environ Microbiol 75:2879–2888

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Simmons TL, Engene N, Ureña LD, Romero LI, Ortega-Barría E, Gerwick L, Gerwick WH (2009) Viridamides A and B, lipodepsipeptides with anti-protozoan activity from the marine cyanobacterium Oscillatoria nigro-viridis. J Nat Prod 71:1544–1550

    Google Scholar 

  45. Strunecky O, Elster J, Komárek J (2010) Phylogenetic relationship between geographically separate Phormidium cyanobacterial is there a link between north and south polar regions? Polar Biol 33:1419–1428

    Google Scholar 

  46. Suda S, Moriya R, Sumimoto S, Ohno O, Suenaga K (2013) Genetic diversity of filamentous cyanobacteria from shore regions of Okinawa. J Mar Sci Technol 21:175–180

    Google Scholar 

  47. Sueyoshi K, Kaneda M, Sumimoto S, Oishi S, Fujii SK, Teruya T (2016) Odoamide, a cytotoxic cyclodepsipeptide from the marine cyanobacterium Okeania sp. Tetrahedron 72:5472–5478

    CAS  Google Scholar 

  48. Sueyoshi K, Kudo T, Yamano A, Sumimoto S, Iwasaki A, Suenaga K, Teruya T (2017a) Odobromoamide, a terminal alkynyl bromide-containing cyclodepsipeptide from marine cyanobacterium Okeania sp. Bull Chem Soc Jpn 90:436–440

    CAS  Google Scholar 

  49. Sueyoshi K, Yamano A, Ozaki K, Sumimoto S, Iwasaki A, Suenaga K, Teruya T (2017b) Three new malyngamides from the marine cyanobacterium Moorea producens. Mar Drug 15:367

    Google Scholar 

  50. Sumimoto S, Masayuki K, Sato R, Shinomiya S, Iwasaki A, Suda S, Teruya T, Inuzuka T, Ohno O, Suenaga K (2019) Minnamide A, a linear lipopeptide from the marine cyanobacterium Okeania hirsuta. Org Lett 21:1187–1190

    CAS  PubMed  Google Scholar 

  51. Tan LT (2007) Bioactive natural products from marine cyanobacteria for drug discovery. Phytochem 68:954–957

    CAS  Google Scholar 

  52. Taori K, Paul VJ, Luesch H (2008) Structure and activity of largazole, a potent antiproliferative agent from Floridian marine cyanobacterium Symploca sp. J Am Chem Soc 130:3305–3312

    Google Scholar 

  53. Teruya T, Sasaki H, Fukazawa H, Suenaga K (2009) Bisebromoamide, a potent cytotoxic peptide from the marine cyanobacterium Lyngbya sp.: isolation, stereostructure, and biological activity. Org Lett 11:5062–5065

    CAS  PubMed  Google Scholar 

  54. Tidgewell K, Clark BR, Gerwick WH (2010) The natural products chemistry of cyanobacteria. In: Mander L, Lui H-W (eds) Comprehensive natural products II chemistry and biology, vol 2. Elsevier, Oxford, pp 141–188

    Google Scholar 

  55. Tuji A, Niiyama Y (2018) Two new Pseudanabaena (Cyanobacteria, Synechococcales) species from Japan, Pseudanabaena cinereal and Pseudanabaena yagii, which produce 2-methylisoborneol. Phycol Res 66:291–299

    CAS  Google Scholar 

  56. Yu HB, Glukhnov E, Li Y, Iwasaki A, Gerwick L, Dorrestein PC, Jiao BH, Gerwick WH (2019) Cytotoxic microcolin lipopeptide from the marine cyanobacterium Moorea producens. J Nat Prod 82:2608–2619

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Associate Professor James Davis Reimer for manuscript proofreading and comments. Part of this study was supported by the Okinawa Science and Technology Innovation System Construction Program.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shoichiro Suda.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nuryadi, H., Sumimoto, S., Teruya, T. et al. Characterization of Macroscopic Colony-Forming Filamentous Cyanobacteria from Okinawan Coasts as Potential Sources of Bioactive Compounds. Mar Biotechnol 22, 824–835 (2020). https://doi.org/10.1007/s10126-020-10010-7

Download citation

Keywords

  • Marine macroscopic colony-forming filamentous (MMCFF) cyanobacteria
  • Morphological characterization
  • 16S rRNA phylogeny
  • Cytotoxic activity