Marine Biotechnology

, Volume 20, Issue 4, pp 549–556 | Cite as

LexA Binds to Transcription Regulatory Site of Cell Division Gene ftsZ in Toxic Cyanobacterium Microcystis aeruginosa

  • Takashi Honda
  • Daichi Morimoto
  • Yoshihiko Sako
  • Takashi Yoshida
Original Article


Previously, we showed that DNA replication and cell division in toxic cyanobacterium Microcystis aeruginosa are coordinated by transcriptional regulation of cell division gene ftsZ and that an unknown protein specifically bound upstream of ftsZ (BpFz; DNA-binding protein to an upstream site of ftsZ) during successful DNA replication and cell division. Here, we purified BpFz from M. aeruginosa strain NIES-298 using DNA-affinity chromatography and gel-slicing combined with gel electrophoresis mobility shift assay (EMSA). The N-terminal amino acid sequence of BpFz was identified as TNLESLTQ, which was identical to that of transcription repressor LexA from NIES-843. EMSA analysis using mutant probes showed that the sequence GTACTAN3GTGTTC was important in LexA binding. Comparison of the upstream regions of lexA in the genomes of closely related cyanobacteria suggested that the sequence TASTRNNNNTGTWC could be a putative LexA recognition sequence (LexA box). Searches for TASTRNNNNTGTWC as a transcriptional regulatory site (TRS) in the genome of M. aeruginosa NIES-843 showed that it was present in genes involved in cell division, photosynthesis, and extracellular polysaccharide biosynthesis. Considering that BpFz binds to the TRS of ftsZ during normal cell division, LexA may function as a transcriptional activator of genes related to cell reproduction in M. aeruginosa, including ftsZ. This may be an example of informality in the control of bacterial cell division.


Microcystis LexA Cell division ftsZ Checkpoint 


Funding Information

This study was partly supported by a Grant-in-Aid for Science Research B (No. 20310045, No. 23310056 and No. 17H03850) from The Japan Society for the Promotion of Science (JSPS).

Supplementary material

10126_2018_9826_MOESM1_ESM.xlsx (14 kb)
Table S1 Putative LexA box and LexA-regulated genes in Microcystis. aTranscription units were predicted using FGENESB ( (Solovyev and Salamov 2011). bGene number from CyanoBase ( cDescription of gene function as per the CyanoBase. dThe LexA box is indicated in uppercase letters. eThe position of the LexA box is indicated upstream (−) or downstream (+) of the start codon (+1). fThe direction of the LexA box is indicated in relation to the gene direction (forward, D; opposite, R). (XLSX 13 kb).


  1. Bailey TL, Elkan C (1994) Fitting a mixture model by expectation maximization to discover motifs in biopolymers. ISMB 2:28–36PubMedGoogle Scholar
  2. Barnett MJ, Hung DY, Reisenauer A, Shapiro L, Long SR (2001) A homolog of the CtrA cell cycle regulator is present and essential in Sinorhizobium meliloti. J Bacteriol 183:3204–3210CrossRefPubMedCentralPubMedGoogle Scholar
  3. Bi E, Lutkenhaus J (1991) FtsZ ring structure associated with division in Escherichia coli. Nature 354:161–164CrossRefPubMedGoogle Scholar
  4. Clark DJ (1968) Regulation of deoxyribonucleic acid replication and cell division in Escherichia coli B/r. J Bacteriol 96:1214–1224PubMedCentralPubMedGoogle Scholar
  5. Crooks GE, Hon G, Chandonia JM, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190CrossRefPubMedCentralPubMedGoogle Scholar
  6. Domain F, Houot L, Chauvat F, Cassier-Chauvat C (2004) Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is critical to the survival of cells facing inorganic carbon starvation. Mol Microbiol 53:65–80CrossRefPubMedGoogle Scholar
  7. Dong G, Yang Q, Wang Q, Kim YI, Wood TL, Osteryoung KW, van Oudenaarden A, Golden SS (2010) Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus. Cell 140:529–539CrossRefPubMedCentralPubMedGoogle Scholar
  8. Elledge SJ (1996) Cell cycle checkpoints: preventing an identity crisis. Science 274:1664–1672CrossRefPubMedGoogle Scholar
  9. Erill I, Campoy S, Barbé J (2007) Aeons of distress: an evolutionary perspective on the bacterial SOS response. FEMS Microbiol Rev 31:637–656CrossRefPubMedGoogle Scholar
  10. Fernández de Henestrosa AR, Ogi T, Aoyagi S, Chafin D, Hayes JJ, Ohmori H, Woodgate R (2000) Identification of additional genes belonging to the LexA regulon in Escherichia coli. Mol Microbiol 35:1560–1572CrossRefPubMedGoogle Scholar
  11. Gutekunst K, Phunpruch S, Schwarz C, Schuchardt S, Schulz-Friedrich R, Appel J (2005) LexA regulates the bidirectional hydrogenase in the cyanobacterium Synechocystis sp. PCC 6803 as a transcription activator. Mol Microbiol 58:810–823CrossRefPubMedGoogle Scholar
  12. Honda T, Yoshida T, Hiroishi S, Sako Y (2012) A protein binding to an upstream sequence of ftsZ involved in coordination of DNA replication and cell division in Microcystis aeruginosa. Fish Sci 78:375–379CrossRefGoogle Scholar
  13. Horii T, Ogawa T, Nakatani T, Hase T, Matsubara H, Ogawa H (1981) Regulation of SOS functions: purification of E. coli LexA protein and determination of its specific site cleaved by the RecA protein. Cell 27:515–522CrossRefPubMedGoogle Scholar
  14. Ishii A, Hihara Y (2008) An AbrB-like transcriptional regulator, Sll0822, is essential for the activation of nitrogen-regulated genes in Synechocystis sp. PCC6803. Plant Physiol 148:660–670CrossRefPubMedCentralPubMedGoogle Scholar
  15. Kasai F, Kawachi M, Erata M, Watanabe MM (2004) List of strains, microalgae and protozoa. National Institute for Environmental Studies, TsukubaGoogle Scholar
  16. Kawai Y, Moriya S, Ogasawara N (2003) Identification of a protein, YneA, responsible for cell division suppression during the SOS response in Bacillus subtilis. Mol Microbiol 47:1113–1122CrossRefPubMedGoogle Scholar
  17. Kelly AJ, Sackett MJ, Din N, Quardokus E, Brun YV (1998) Cell cycle-dependent transcriptional and proteolytic regulation of FtsZ in Caulobacter. Genes Dev 12:880–893CrossRefPubMedCentralPubMedGoogle Scholar
  18. Kizawa A, Kawahara A, Takimura Y, Nishiyama Y, Hihara Y (2016) RNA-seq profiling reveals novel target genes of LexA in the cyanobacterium Synechocystis sp. PCC6803. Front Microbiol 7:193. CrossRefPubMedCentralPubMedGoogle Scholar
  19. Kizawa A, Kawahara A, Takashima K, Takimura Y, Nishiyama Y, Hihara Y (2017) The LexA transcription factor regulates fatty acid biosynthetic genes in the cyanobacterium Synechocystis sp. PCC6803. Plant J 92:189–198CrossRefPubMedGoogle Scholar
  20. Lieman-Hurwitz J, Maya H, Shalev-Malul G, Ishii A, Hihara Y, Gaathon A, Lebendiker M, Kaplan A (2009) A cyanobacterial AbrB-like protein affects the apparent photosynthetic affinity for CO2 by modulating low-CO2-induced gene expression. Environ Microbiol 11:927–936CrossRefPubMedGoogle Scholar
  21. Liu G, Begg K, Geddes A, Donachie WD (2001) Transcription of essential cell division genes is linked to chromosome replication in Escherichia coli. Mol Microbiol 40:909–916CrossRefPubMedGoogle Scholar
  22. Love PE, Yasbin RE (1984) Genetic characterization of the inducible SOS-like system of Bacillus subtilis. J Bacteriol 160:910–920PubMedCentralPubMedGoogle Scholar
  23. MacKintosh C, Beattie KA, Klumpp S, Cohen P, Codd GA (1990) Cyanobacterial microcystin-LR is a potent and specific inhibitor of protein phosphatases 1 and 2A from both mammals and higher plants. FEBS Lett 264:187–192CrossRefPubMedGoogle Scholar
  24. Markson JS, Piechura JR, Puszynska AM, O’Shea EK (2013) Circadian control of global gene expression by the cyanobacterial master regulator RpaA. Cell 155:1396–1408CrossRefPubMedCentralPubMedGoogle Scholar
  25. Mazón G, Lucena J, Campoy S, de Henestrosa ARF, Candau P, Barbé J (2004) LexA-binding sequences in Gram-positive and cyanobacteria are closely related. Mol Gen Genomics 271:40–49CrossRefGoogle Scholar
  26. McAdams HH, Shapiro L (2003) A bacterial cell-cycle regulatory network operating in time and space. Science 301:1874–1877CrossRefPubMedGoogle Scholar
  27. Mori T, Binder B, Johnson CH (1996) Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc Natl Acad Sci U S A 93:10183–10188CrossRefPubMedCentralPubMedGoogle Scholar
  28. Mukherjee A, Cao C, Lutkenhaus J (1998) Inhibition of FtsZ polymerization by SulA, an inhibitor of septation in Escherichia coli. Proc Natl Acad Sci U S A 95:2885–2890CrossRefPubMedCentralPubMedGoogle Scholar
  29. Namikoshi M, Rinehart KL, Sakai R, Stotts RR, Dahlem AM, Beasley VR, Carmichael WW, Evans WR (1992) Identification of 12 hepatotoxins from a Homer Lake bloom of the cyanobacteria Microcystis aeruginosa, Microcystis viridis, and Microcystis wesenbergii: nine new microcystins. J Org Chem 57:866–872CrossRefGoogle Scholar
  30. Nishiwaki-Matsushima R, Ohta T, Nishiwaki S, Suganuma M, Kohyama K, Ishikawa T, Carmichael WW, Fujiki H (1992) Liver tumor promotion by the cyanobacterial cyclic peptide toxin microcystin-LR. J Cancer Res Clin Oncol 118:420–424CrossRefPubMedGoogle Scholar
  31. Oliveira P, Lindblad P (2008) An AbrB-like protein regulates the expression of the bidirectional hydrogenase in Synechocystis sp. strain PCC6803. J Bacteriol 190:1011–1019CrossRefPubMedGoogle Scholar
  32. Patterson-Fortin LM, Owttrim GW (2008) A Synechocystis LexA-orthologue binds direct repeats in target genes. FEBS Lett 582:2424–2430CrossRefPubMedGoogle Scholar
  33. Patterson-Fortin LM, Colvin KR, Owttrim GW (2006) A LexA-related protein regulates redox-sensitive expression of the cyanobacterial RNA helicase, crhR. Nucleic Acids Res 34:3446–3454CrossRefPubMedCentralPubMedGoogle Scholar
  34. Prudhomme M, Attaiech L, Sanchez G, Martin B, Claverys JP (2006) Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:89–92CrossRefPubMedGoogle Scholar
  35. Roger B, Mark P (1980) The lexA gene product represses its own promoter. Proc Natl Acad Sci U S A 77:1932–1936CrossRefGoogle Scholar
  36. Santi I, Dhar N, Bousbaine D, Wakamoto Y, McKinney JD (2013) Single-cell dynamics of the chromosome replication and cell division cycles in mycobacteria. Nat Commun 4:2470CrossRefPubMedGoogle Scholar
  37. Seshasayee AS, Bertone P, Fraser GM, Luscombe NM (2006) Transcriptional regulatory networks in bacteria: from input signals to output responses. Curr Opin Microbiol 9:511–519CrossRefPubMedGoogle Scholar
  38. Slilaty SN, Little JW (1987) Lysine-156 and serine-119 are required for LexA repressor cleavage: a possible mechanism. Proc Natl Acad Sci U S A 84:3987–3991CrossRefPubMedCentralPubMedGoogle Scholar
  39. Solovyev V, Salamov A (2011) Automatic annotation of microbial genomes and metagenomic sequences. In: Li RW (ed) Metagenomics and its applications in agriculture, biomedicine and environmental studies. Nova Science Publishers, New York, pp 61–78Google Scholar
  40. Thomas-Chollier M, Defrance M, Medina-Rivera A, Sand O, Herrmann C, Thieffry D, van Helden J (2011) RSAT 2011: regulatory sequence analysis tools. Nucleic Acids Res 39:W86–W91CrossRefPubMedCentralPubMedGoogle Scholar
  41. Trusca D, Scott S, Thompson C, Bramhill D (1998) Bacterial SOS checkpoint protein SulA inhibits polymerization of purified FtsZ cell division protein. J Bacteriol 180:3946–3953PubMedCentralPubMedGoogle Scholar
  42. Wade JT, Reppas NB, Church GM, Struhl K (2005) Genomic analysis of LexA binding reveals the permissive nature of the Escherichia coli genome and identifies unconventional target sites. Genes Dev 19:2619–2630CrossRefPubMedCentralPubMedGoogle Scholar
  43. Wortinger M, Sackett MJ, Brun YV (2000) CtrA mediates a DNA replication checkpoint that prevents cell division in Caulobacter crescentus. EMBO J 19:4503–4512CrossRefPubMedCentralPubMedGoogle Scholar
  44. Wu LJ, Errington J (2004) Coordination of cell division and chromosome segregation by a nucleoid occlusion protein in Bacillus subtilis. Cell 117:915–925CrossRefPubMedGoogle Scholar
  45. Wu LJ, Ishikawa S, Kawai Y, Oshima T, Ogasawara N, Errington J (2009) Noc protein binds to specific DNA sequences to coordinate cell division with chromosome segregation. EMBO J 28:1940–1952CrossRefPubMedCentralPubMedGoogle Scholar
  46. Yoshida T, Maki M, Okamoto H, Hiroishi S (2005) Coordination of DNA replication and cell division in cyanobacteria Microcystis aeruginosa. FEMS Microbiol Lett 251:149–154CrossRefPubMedGoogle Scholar
  47. Yoshizawa S, Matsushima R, Watanabe MF, Harada K, Ichihara A, Carmichael WW, Fujiki H (1990) Inhibition of protein phosphatases by microcystins and nodularin associated with hepatotoxicity. J Cancer Res Clin Oncol 116:609–614CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Takashi Honda
    • 1
  • Daichi Morimoto
    • 1
  • Yoshihiko Sako
    • 1
  • Takashi Yoshida
    • 1
  1. 1.Graduate school of AgricultureKyoto UniversityKyotoJapan

Personalised recommendations