Cultured Pearl Surface Quality Profiling by the Shell Matrix Protein Gene Expression in the Biomineralised Pearl Sac Tissue of Pinctada margaritifera

Original Article
  • 7 Downloads

Abstract

Nucleated pearls are produced by molluscs of the Pinctada genus through the biomineralisation activity of the pearl sac tissue within the recipient oyster. The pearl sac originates from graft tissue taken from the donor oyster mantle and its functioning is crucial in determining key factors that impact pearl quality surface characteristics. The specific role of related gene regulation during gem biogenesis was unknown, so we analysed the expression profiles of eight genes encoding nacreous (PIF, MSI60, PERL1) or prismatic (SHEM5, PRISM, ASP, SHEM9) shell matrix proteins or both (CALC1) in the pearl sac (N = 211) of Pinctada margaritifera during pearl biogenesis. The pearls and pearl sacs analysed were from a uniform experimental graft with sequential harvests at 3, 6 and 9 months post-grafting. Quality traits of the corresponding pearls were recorded: surface defects, surface deposits and overall quality grade. Results showed that (1) the first 3 months of culture seem crucial for pearl quality surface determination and (2) all the genes (SHEM5, PRISM, ASP, SHEM9) encoding proteins related to calcite layer formation were over-expressed in the pearl sacs that produced low pearl surface quality. Multivariate regression tree building clearly identified three genes implicated in pearl surface quality, SHEM9, ASP and PIF. SHEM9 and ASP were clearly implicated in low pearl quality, whereas PIF was implicated in high quality. Results could be used as biomarkers for genetic improvement of P. margaritifera pearl quality and constitute a novel perspective to understanding the molecular mechanism of pearl formation.

Keywords

Biomineralisation Relative gene expression Pearl sac Biomarkers Pearl quality Pinctada margaritifera 

Notes

Acknowledgements

The authors would especially like to thank the host sites: SCA Regahiga Pearls (Mangareva island, Gambier archipelago, French Polynesia) and Gauguin’s pearl farm (Rangiroa atoll, Tuamotu archipelago, French Polynesia) for their generous support. The authors are indebted to S. Parrad and S. Nakasai for their helpful assistance. C. Blay was jointed funded by an Ifremer PhD grant, with a support from the “Direction des ressources marines” and CRIOBE EPHE.

Compliance with Ethical Standards

Competing Interests

The authors declare that they have no competing interests.

Supplementary material

10126_2018_9811_MOESM1_ESM.doc (50 kb)
ESM 1 (DOC 50 kb)
10126_2018_9811_MOESM2_ESM.doc (208 kb)
ESM 2 (DOC 208 kb)

References

  1. Achari GPK (1982) Project profile of pearl culture. Seaf Export J 14:9–11Google Scholar
  2. Addadi L, Weiner S (1985) Interactions between acidic proteins and crystals: stereochemical requirements in biomineralisation. Proc Natl Acad Sci U S A 82:4110–4114CrossRefPubMedPubMedCentralGoogle Scholar
  3. Arnaud-Haond S, Goyard E, Vonau V, Herbaut C, Prou J, Saulnier D (2007) Pearl formation: persistence of the graft during the entire process of biomineralization. Mar Biotechnol 9(1):113–116CrossRefPubMedGoogle Scholar
  4. Belcher AM, Wu XH, Christensen RJ, Hansma PK, Stucky GD, Morse DE (1996) Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381:56–58CrossRefGoogle Scholar
  5. Blay C, Sham-Koua M, Vonau V, Tetumu R, Cabral P, Ky CL (2014) Influence of nacre deposition rate on cultured pearl grade and colour in the black-lipped pearl oyster Pinctada margaritifera using farmed donor families. Aquac Int 22(2):937–953CrossRefGoogle Scholar
  6. Blay C, Planes S, Ky CL (2017) Donor and recipient contribution to phenotypic traits and the expression of biomineralisation genes in the pearl oyster model Pinctada margaritifera. Sci Rep 7(1):2696.Google Scholar
  7. Cochennec-Laureau N, Montagnani C, Saulnier D, Fougerouse A, Levy P, Lo C (2010) A histological examination of grafting success in pearl oyster Pinctada margaritifera in French Polynesia. Aquat Living Resour 23(1):131–140CrossRefGoogle Scholar
  8. Cuif JP, Ball AP, Dauphin Y, Farre B, Nouet J, Perez-Huerta A, Salome’ M, Williams CT (2008) Structural, mineralogical and biochemical diversity in the lower part of the pearl layer of cultivated seawater pearls from Polynesia. Microsc Microanal 14:405–417CrossRefPubMedGoogle Scholar
  9. De’Ath G (2002) Multivariate regression trees: a new technique for modeling species-environnement relationships. Ecology 83:1105–1117Google Scholar
  10. Ellis S, Haws M (1999) Producing pearls using the black-lip pearl oyster (Pinctada margaritifera). Aquafarmer Information Sheet 141:8Google Scholar
  11. Falini G, Albeck S, Weiner S, Addadi L (1996) Control of aragonite or calcite polymorphism by mollusc shell macromolecules. Science 27:167–169Google Scholar
  12. Fang D, Xu G, Hu Y, Pan C, Xie L, Zhang R (2011) Identification of genes directly involved in shell formation and their functions in pearl oyster, Pinctada fucata. PLoS One 6:e21860CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fire A, Xu SQ, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811CrossRefPubMedGoogle Scholar
  14. Funabara D, Ohmori F, Kinoshita S, Koyama H, Mizutani S, Ota A, ..., Kanoh S (2014) Novel genes participating in the formation of prismatic and nacreous layers in the pearl oyster as revealed by their tissue distribution and RNA interference knockdown. PLoS One 9(1):e84706Google Scholar
  15. Gao J, Chen Y, Yang Y, Liang J, Xie J, Liu J, ..., Zhang R (2016) The transcription factor Pf-POU3F4 regulates expression of the matrix protein genes Aspein and Prismalin-14 in pearl oyster (Pinctada fucata). FEBS J 283(10):1962–1978Google Scholar
  16. Gardner LD, Mills D, Wiegand A, Leavesley D, Elizur A (2011) Spatial analysis of biomineralisation associated gene expression from the mantle organ of the pearl oyster Pinctada maxima. BMC Genomics 12(1):455CrossRefPubMedPubMedCentralGoogle Scholar
  17. Huang XD, Zhao M, Liu WG, Guan YY, Shi Y, Wang Q, ..., He MX (2013) Gigabase-scale transcriptome analysis on four species of pearl oysters. Mar Biotechnol 15(3):253–264Google Scholar
  18. Inoue N, Ishibashi R, Ishikawa T, Atsumi T, Aoki H, Komaru A (2010) Gene expression patterns and pearl formation in the Japanese pearl oyster (Pinctada fucata): a comparison of gene expression patterns between the pearl sac and mantle tissues. Aquaculture 308:S68–S74CrossRefGoogle Scholar
  19. Inoue N, Ishibashi R, Ishikawa T, Atsumi T, Aoki H, Komaru A (2011a) Can the quality of pearls from the Japanese pearl oyster (Pinctada fucata) be explained by the gene expression patterns of the major shell matrix proteins in the pearl sac? Mar Biotechnol 13(1):48–55CrossRefPubMedGoogle Scholar
  20. Inoue N, Ishibashi R, Ishikawa T, Atsumi T, Aoki H, Komaru A (2011b) Gene expression patterns in the outer mantle epithelial cells associated with pearl sac formation. Mar Biotechnol 13:474–483CrossRefPubMedGoogle Scholar
  21. Joubert C, Piquemal D, Marie B, Manchon L, Pierrat F, Zanella-Cléon I, ..., Montagnani C (2010) Transcriptome and proteome analysis of Pinctada margaritifera calcifying mantle and shell: focus on biomineralisation. BMC Genomics 11:613–626Google Scholar
  22. Kishore P, Southgate PC (2014) A detailed description of pearl-sac development in the black-lip pearl oyster, Pinctada margaritifera (Linnaeus 1758). Aquac Res 47(7):2215–2226Google Scholar
  23. Ky CL, Blay C, Sham-Koua M, Vanaa V, Lo C, Cabral P (2013) Family effect on cultured pearl quality in black-lipped pearl oyster Pinctada margaritifera and insights for genetic improvement. Aquat Living Resour 26:133–145CrossRefGoogle Scholar
  24. Ky CL, Molinari N, Moe E, Pommier S (2014) Impact of season and grafter skill on nucleus retention and pearl oyster mortality rate in Pinctada margaritifera aquaculture. Aquac Int 22(5):1689–1701CrossRefGoogle Scholar
  25. Ky CL, Nakasai S, Molinari N, Devaux D (2015) Influence of grafter skill and season on cultured pearl shape, circles and rejects in Pinctada margaritifera aquaculture in Mangareva lagoon. Aquaculture 435:361–370CrossRefGoogle Scholar
  26. Ky CL, Okura R, Nakasai S, Devaux D (2016) Quality trait signature at archipelago scale of the cultured pearls produced by the black-lipped pearl oyster (Pinctada margaritifera Var. cumingi) in French Polynesia. J Shellfish Res 35(4):827–835CrossRefGoogle Scholar
  27. Levi Y, Albeck S, Brack A, Weiner S, Addadi L (1998) Control over aragonite crystal nucleation and growth: an in vitro study of biomineralisation. Chem Eur J 4:389–396CrossRefGoogle Scholar
  28. Liu X, Li J, Xiang L, Sun J, Zheng G, Zhang G, Zhang R (2012) The role of matrix proteins in the control of nacreous layer deposition during pearl formation. Proc R Soc Lond B Biol Sci 279(1730):1000–1007CrossRefGoogle Scholar
  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408Google Scholar
  30. Lowenstam HA, Weiner S (1989) On Biomineralisation. Oxford University Press, OxfordGoogle Scholar
  31. Ma H, Zhang B, Lee IS, Qin Z, Tong Z, Qiu S (2007) Aragonite observed in the prismatic layer of seawater cultured pearls. Front Mater Sci Chin 1:326–329CrossRefGoogle Scholar
  32. Marie B, Joubert C, Tayalé A, Zanella-Cléon I, Belliard C, Piquemal D, ..., Montagnani C (2012) Different secretory repertoires control the biomineralisation processes of prism and nacre deposition of the pearl oyster shell. Proc Natl Acad Sci 109:20986–20991Google Scholar
  33. Marin F, Luquet G, Marie B, Medakovic D (2007) Molluscan shell proteins: primary structure, origin, and evolution. Curr Top Dev Biol 80:209–276CrossRefGoogle Scholar
  34. McGinty EL, Zenger KR, Jones DB, Jerry DR (2012) Transcriptome analysis of biomineralisation-related genes within the pearl sac: host and donor oyster contribution. Mar Genomics 5:27–33CrossRefPubMedGoogle Scholar
  35. Miyamoto H, Miyashita T, Okushima M, Nakano S, Morita T, Matsushiro A (1996) A carbonic anhydrase from the nacreous layer in oyster pearls. Proc Natl Acad Sci U S A 93:9657–9660CrossRefPubMedPubMedCentralGoogle Scholar
  36. Miyamoto H, Miyoshi F, Kohno J (2005) The carbonic anhydrase domain protein nacrein is expressed in the epithelial cells of the mantle and acts as a negative regulator in calcification in the mollusk Pinctada fucata. Zool Sci 22:311–315CrossRefPubMedGoogle Scholar
  37. Miyamoto H, Endo H, Hashimoto N, Isowa Y, Kinoshita S, Kotaki T, ..., Notazawa A (2013) The diversity of shell matrix proteins: genome-wide investigation of the pearl oyster, Pinctada fucata. Zool Sci 30:801–816Google Scholar
  38. Miyashita T, Takagi R, Okushima M, Nakano S, Miyamoto H, Nishikawa E, Matsushiro A (2000) Complementary DNA cloning and characterization of pearlin, a new class of matrix protein in the nacreous layer of oyster pearls. Mar Biotechnol 2:409–418PubMedGoogle Scholar
  39. Montagnani C, Marie B, Marin F, Belliard C, Riquet F, Tayalé A, ..., Cochennec-Laureau N (2011) Pmarg-Pearlin is a matrix protein involved in nacre framework formation in the pearl oyster Pinctada margaritifera. Chembiochem 12:2033–2043Google Scholar
  40. Owens L, Malham S (2015) Review of the RNA interference pathway in molluscs including some possibilities for use in bivalves in aquaculture. J Mar Sci Eng 3(1):87–99CrossRefGoogle Scholar
  41. Scoones SJR (1996) The development of the pearl sac in Pinctada maxima (Jameson, 1901) (Lamellibranchia:Pteriidae) and the implications for the quality of cultured pearls. Master of Science. The University of Western Australia, Perth, p 36e79Google Scholar
  42. Shi Y, Yu C, Gu Z, Zhan X, Wang Y, Wang A (2013) Characterization of the pearl oyster (Pinctada martensii) mantle transcriptome unravels biomineralisation genes. Mar Biotechnol 15(2):175–187CrossRefPubMedGoogle Scholar
  43. Southgate PC (2008) Pearl oyster culture. In: Southgate PC, Lucas JS (eds) The pearl oyster. Elsevier, Oxford, pp 231–272Google Scholar
  44. Southgate PC (2011) The pearl oyster culture. In: Southgate P, Lucas J (Eds.) The pearl Oyster. Elsevier Science Publishers BV, Amsterdam, p 257Google Scholar
  45. Sudo S, Fujikawa T, Nagakura T, Ohkubo T, Sakaguchi K, Tanaka M, Nakashima K, Takahashi T (1997) Structures of mollusc shell framework proteins. Nature 387:563–564CrossRefPubMedGoogle Scholar
  46. Suzuki M, Nagasawa H (2007) The structure–function relationship analysis of prismalin-14 from the prismatic layer of the Japanese pearl oyster, Pinctada fucata. FEBS J 274:5158–5166CrossRefPubMedGoogle Scholar
  47. Suzuki M, Nagasawa H (2013) Mollusk shell structures and their formation mechanism. Can J Zool 91:349–366CrossRefGoogle Scholar
  48. Suzuki M, Murayama E, Inoue H, Ozaki N, Tohse H, Kogure T, Nagasawa H (2004) Characterization of Prismalin-14, a novel matrix protein from the prismatic layer of the Japanese pearl oyster (Pinctada fucata). Biochem J 382:205–213CrossRefPubMedPubMedCentralGoogle Scholar
  49. Suzuki M, Saruwatari K, Kogure T, Yamamoto Y, Nishimura T, Kato T, Nagasawa H (2009) An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325:1388–1390CrossRefPubMedGoogle Scholar
  50. Takeuchi T, Sarashina I, Iijima M, Endo K (2008) In vitro regulation of CaCO3 crystal polymorphism by the highly acidic molluscan shell protein Aspein. FEBS Lett 582:591–596CrossRefPubMedGoogle Scholar
  51. Tayalé A, Gueguen Y, Treguier C, Le Grand J, Cochennec-Laureau N, Montagnani C, Ky CL (2012) Evidence of donor effect on cultured pearl quality from a duplicated grafting experiment on Pinctada margaritifera using wild donors. Aquat Living Resour 25:269–280CrossRefGoogle Scholar
  52. Team RC (2015) R: A language and environment for statistical computing [Internet]. R Foundation for Statistical Computing; 2014, ViennaGoogle Scholar
  53. Therneau TM, Atkinson B, Ripley B, Oksanen J, De’ath G (2013) mvpart: Multivariate partitioning R package version 16–1. http://CRAN.R-project.org/package=mvpart
  54. Tsukamoto D, Sarashina I, Endo K (2004) Structure and expression of an unusually acidic matrix protein of pearl oyster shells. Biochem Biophys Res Commun 320:1175–1180CrossRefPubMedGoogle Scholar
  55. Wada K (1968) Machanism of growth of nacre in bivalvia. Bull Natl Pearl Resour Lab 13:1490–1539Google Scholar
  56. Wang N, Kinoshita S, Riho C, Maeyama K, Nagai K, Watabe S (2009) Quantitative expression analysis of nacreous shell matrix protein genes in the process of pearl biogenesis. Comp Biochem Physiol B Biochem Mol Biol 154(3):346–350CrossRefPubMedGoogle Scholar
  57. Weiner S, Hood L (1975) Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science 190:987–989CrossRefPubMedGoogle Scholar
  58. Yan F, Jiao Y, Deng Y, Du X, Huang R, Wang Q, Chen W (2014) Tissue inhibitor of metalloproteinase gene from pearl oyster Pinctada martensii participates in nacre formation. Biochem Biophys Res Commun 450(1):300–305CrossRefPubMedGoogle Scholar
  59. Yano M, Nagai K, Morimoto K, Miyamoto H (2006) Shematrin: a family of glycine-rich structural proteins in the shell of the pearl oyster Pinctada fucata. Comp Biochem Physiol B Biochem Mol Biol 144(2):254–262CrossRefPubMedGoogle Scholar
  60. Zhan X, Gu Z, Yu C, Wen H, Shi Y, Wang A (2015) Expressed sequence tags 454 sequencing and biomineralisation gene expression for pearl sac of the pearl oyster, Pinctada fucata martensii. Aquac Res 46(3):745–758CrossRefGoogle Scholar
  61. Zhang G, Fang X, Guo X, Li L, Luo R, Xu F, Wang J (2012) The oyster genome reveals stress adaptation and complexity of shell formation. Nature 490:49–54CrossRefPubMedGoogle Scholar
  62. Zhao M, He M, Huang X, Wang Q (2014) A homeodomain transcription factor gene, PfMSX, activates expression of Pif gene in the pearl oyster Pinctada fucata. PLoS One 9(8):e103830CrossRefPubMedPubMedCentralGoogle Scholar
  63. Zhu W, Fan S, Huang G, Zhang D, Liu B, Bi X, Yu D (2015) Highly expressed EGFR in pearl sac may facilitate the pearl formation in the pearl oyster, Pinctada fucata. Gene 566(2):201–211CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Ifremer, UMR EIO241, Labex Corail, Centre du PacifiqueTaravaoFrench Polynesia
  2. 2.PSL Research University: EPHE-UPVD-CNRS, USR 3278 CRIOBE, Université de PerpignanPerpignan CedexFrance
  3. 3.Laboratoire d’Excellence “CORAIL”TahitiFrench Polynesia

Personalised recommendations