Skip to main content
Log in

Visualization of Endoplasmic Reticulum and Mitochondria in Aurantiochytrium limacinum by the Expression of EGFP with Cell Organelle-Specific Targeting/Retaining Signals

  • Original Article
  • Published:
Marine Biotechnology Aims and scope Submit manuscript

Abstract

Thraustochytrids are single cell marine eukaryotes that produce large amounts of polyunsaturated fatty acids such as docosahexaenoic acid. In the present study, we report the visualization of endoplasmic reticulum (ER) and mitochondria in a type strain of the thraustochytrid, Aurantiochytrium limacinum ATCC MYA-1381, using the enhanced green fluorescent protein (EGFP) with specific targeting/retaining signals. We expressed the egfp gene with ER targeting/retaining signals from A. limacinum calreticulin or BiP/GRP78 in the thraustochytrid, resulting in the distribution of EGFP signals at the perinuclear region and near lipid droplets. ER-Tracker™ Red, an authentic fluorescent probe for the visualization of ER in mammalian cells, also stained the same region. We observed small lipid droplets generated from the visualized ER in the early growth phase of cell culture. Expression of the egfp gene with the mitochondria targeting signal from A. limacinum cytochrome c oxidase resulted in the localization of EGFP near the plasma membrane. The distribution of EGFP signals coincided with that of MitoTracker® Red CMXRos, which is used to visualize mitochondria in eukaryotes. The ER and mitochondria of A. limacinum were visualized for the first time by EGFP with thraustochytrid cell organelle-specific targeting/retaining signals. These results will contribute to classification of the intracellular localization of proteins expressed in ER and mitochondria as well as analyses of these cell organelles in thraustochytrids.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Bolte S, Talbot C, Boutte Y, Catrice O, Read ND, Satiat-Jeunemaitre B (2004) FM-dyes as experimental probes for dissecting vesicle trafficking in living plant cells. J Microsc 214(2):159–173

    Article  CAS  PubMed  Google Scholar 

  • Breslow JL (2006) n-3 fatty acids and cardiovascular disease. Am J Clin Nutr 83(6 Suppl):S1477–S1482

    Article  Google Scholar 

  • Calder PC (2006) n-3 polyunsaturated fatty acids, inflammation, and inflammatory diseases. Am J Clin Nutr 83(6 Suppl):S1505–S1519

    Article  Google Scholar 

  • Cubitt AB, Heim R, Adams SR, Boyd AE, Gross LA, Tsien RY (1995) Understanding, improving and using green fluorescent proteins. Trends Biochem Sci 20(11):448–455

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016

    Article  CAS  PubMed  Google Scholar 

  • Finco AMO, Mamani LDG, Carvalho JC, de Melo Pereira GV, Thomaz-Soccol V, Soccol CR (2017) Technological trends and market perspectives for production of microbial oils rich in omega-3. Crit Rev Biotechnol 37(5):656–671

    Article  CAS  PubMed  Google Scholar 

  • Fujimoto T, Ohsaki Y, Cheng J, Suzuki M, Shinohara Y (2008) Lipid droplets: a classic organelle with new outfits. Histochem Cell Biol 130(2):263–279

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gerdes H-H, Kaether C (1996) Green fluorescent protein: applications in cell biology. FEBS Lett 389(1):44–47

    Article  CAS  PubMed  Google Scholar 

  • Gocze PM, Freeman DA (1994) Factors underlying the variability of lipid droplet fluorescence in MA-10 leydig tumor cells. Cytometry 17(2):151–158

    Article  CAS  PubMed  Google Scholar 

  • Greenspan P, Mayer EP, Fowler SD (1985) Nile red: a selective fluorescent stain for intracellular lipid droplets. J Cell Biol 100(3):965–973

    Article  CAS  PubMed  Google Scholar 

  • Innis SM (2008) Dietary omega 3 fatty acids and the developing brain. Brain Res 1237:35–43

    Article  CAS  PubMed  Google Scholar 

  • Janssen CI, Kiliaan AJ (2014) Long-chain polyunsaturated fatty acids (LCPUFA) from genesis to senescence: the influence of LCPUFA on neural development, aging, and neurodegeneration. Prog Lipid Res 53:1–17

    Article  CAS  PubMed  Google Scholar 

  • Katayama H, Yamamoto A, Mizushima N, Yoshimori T, Miyawaki A (2008) GFP-like proteins stably accumulate in lysosomes. Cell Struct Funct 33:1–12

    Article  CAS  PubMed  Google Scholar 

  • Kaya K, Nakazawa A, Matsuura H, Honda D, Inouye I, Watanabe MM (2011) Thraustochytrid Aurantiochytrium sp. 18W-13a accummulates high amounts of squalene. Biosci Biotechnol Biochem 75(11):2246–2248

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Jung Kim E, Ryu BG, Park S, Choi YE, Yang JW (2013) A novel fed-batch process based on the biology of Aurantiochytrium sp. KRS101 for the production of biodiesel and docosahexaenoic acid. Bioresour Technol 135:269–274

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Herman PK, Emr SD (1990) The fungal vacuole: composition, function, and biogenesis. Microbiol Rev 54(3):266–292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Köhler RH, Zipfel WR, Webb WW, Hanson MR (1997) The green fluorescent protein as a marker to visualize plant mitochondria in vivo. Plant J 11(3):613–621

    Article  PubMed  Google Scholar 

  • Lenihan-Geels G, Bishop KS, Ferguson LR (2013) Alternative sources of omega-3 fats: can we find a sustainable substitute for fish? Nutrients 5(4):1301–1315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lewis TE, Nichols PD, McMeekin TA (1999) The biotechnological potential of thraustochytrids. Mar Biotechnol (NY) 1(6):580–587

    Article  CAS  Google Scholar 

  • Li SC, Kane PM (2009) The yeast lysosome-like vacuole: endpoint and crossroads. Biochim Biophys Acta 1793:650–663

    Article  CAS  PubMed  Google Scholar 

  • Lydon MJ, Keeler KD, Thomas DB (1980) Vital DNA staining and cell sorting by flow microfluorometry. J Cell Physiol 102(2):175–181

    Article  CAS  PubMed  Google Scholar 

  • Martins DA, Custodio L, Barreira L, Pereira H, Ben-Hamadou R, Varela J, Abu-Salah KM (2013) Alternative sources of n-3 long-chain polyunsaturated fatty acids in marine microalgae. Mar Drugs 11(7):2259–2281

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsuda T, Sakaguchi K, Hamaguchi R, Kobayashi T, Abe E, Hama Y, Hayashi M, Honda D, Okita Y, Sugimoto S, Okino N, Ito M (2012) Analysis of delta12-fatty acid desaturase function revealed that two distinct pathways are active for the synthesis of PUFAs in T. aureum ATCC 34304. J Lipid Res 53(6):1210–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morita E, Kumon Y, Nakahara T, Kagiwada S, Noguchi T (2006) Docosahexaenoic acid production and lipid-body formation in Schizochytrium limacinum SR21. Mar Biotechnol (NY) 8(3):319–327

    Article  CAS  Google Scholar 

  • Nagano N, Taoka Y, Honda D, Hayashi M (2013) Effect of trace elements on growth of marine eukaryotes, tharaustochytrids. J Biosci Bioeng 116(3):337–339

    Article  CAS  PubMed  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24(1):34–35

    Article  CAS  PubMed  Google Scholar 

  • Nilsson T, Warren G (1994) Retention and retrieval in the endoplasmic reticulum and the Golgi apparatus. Curr Opin Cell Biol 6(4):517–521

    Article  CAS  PubMed  Google Scholar 

  • Ohara J, Sakaguchi K, Okita Y, Okino N, Ito M (2013) Two fatty acid elongases possessing C18-delta6/C18-delta9/C20-delta5 or C16-delta9 elongase activity in Thraustochytrium sp. ATCC 26185. Mar Biotechnol (NY) 15(4):476–486

    Article  CAS  Google Scholar 

  • Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol (NY) 10(6):631–640

    Article  CAS  Google Scholar 

  • Rizzuto R, Brini M, Pizzo P, Murgia M, Pozzan T (1995) Chimeric green fluorescent protein as a tool for visualizing subcellular organelles in living cells. Curr Biol 5(6):635–642

    Article  CAS  PubMed  Google Scholar 

  • Sakaguchi K, Matsuda T, Kobayashi T, Ohara Ji, Hamaguchi R, Abe E, Nagano N, Hayashi M, Ueda M, Honda D, Okita Y, Taoka Y, Sugimoto S, Okino N, Ito M (2012) Versatile transformation system that is applicable to both multiple transgene expression and gene targeting for Thraustochytrids. Appl Environ Microbiol 78(9):3193–3202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheuring D, Schöller M, Kleine-Vehn J, Löfke C (2015) Vacuolar staining methods in plant cells. In: Estevez JM (ed) Plant cell expansion: methods and protocols. Springer New York, New York, NY, pp 83–92

    Google Scholar 

  • Seibel NM, Eljouni J, Nalaskowski MM, Hampe W (2007) Nuclear localization of enhanced green fluorescent protein homomultimers. Anal Biochem 368(1):95–99

    Article  CAS  PubMed  Google Scholar 

  • Thiam AR, Foret L (2016) The physics of lipid droplet nucleation, growth and budding. Biochim Biophys Acta 1861(8):715–722

    Article  CAS  PubMed  Google Scholar 

  • Velmurugan N, Sathishkumar Y, Yim SS, Lee YS, Park MS, Yang JW, Jeong KJ (2014) Study of cellular development and intracellular lipid bodies accumulation in the thraustochytrid Aurantiochytrium sp. KRS101. Bioresour Technol 161:149–154

    Article  CAS  PubMed  Google Scholar 

  • Vida TA, Emr SD (1995) A new vital stain for visualizing vacuolar membrane dynamics and endocytosis in yeast. J Cell Biol 128(5):779–792

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Dr. Masahiro Hayashi at the University of Miyazaki (Japan) for providing A. limacinum mh0186. We also thank Dr. Daisuke Honda, Konan University (Japan), for his helpful comments on thraustochytrids. We are indebted to Ms. Yuki Okugawa, the Center for Advanced Instrumental and Educational Supports, Faculty of Agriculture, Kyushu University, for the confocal microscope (Leica TCS SP8 STED) analysis. This work was supported in part by the Science and Technology Research Promotion Program for Agriculture, Forestry, Fisheries and Food Industry, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nozomu Okino.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Okino, N., Wakisaka, H., Ishibashi, Y. et al. Visualization of Endoplasmic Reticulum and Mitochondria in Aurantiochytrium limacinum by the Expression of EGFP with Cell Organelle-Specific Targeting/Retaining Signals. Mar Biotechnol 20, 182–192 (2018). https://doi.org/10.1007/s10126-018-9795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10126-018-9795-7

Keywords

Navigation