Skip to main content
Log in

Degradative properties of two newly isolated strains of the ascomycetes Fusarium oxysporum and Lecanicillium aphanocladii

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Two ascomycete strains were isolated from creosote-contaminated railway sleeper wood. By using a polyphasic approach combining morpho-physiological observations of colonies with molecular tools, the strains were identified as Fusarium oxysporum Schltdl. (IBPPM 543, MUT 4558; GenBank accession no. MG593980) and Lecanicillium aphanocladii Zare & W. Gams (IBPPM 542, MUT 242; GenBank accession no. MG593981). Both strains degraded hazardous pollutants, including polycyclic aromatic hydrocarbons, anthraquinone-type dyes, and oil. Oil was better degraded by F. oxysporum, but the aromatic compounds were better degraded by L. aphanocladii. With both strains, the degradation products of anthracene, phenanthrene, and fluorene were 9,10-anthraquinone, 9,10-phenanthrenequinone, and 9-fluorenone, respectively. During pollutant degradation, F. oxysporum and L. aphanocladii produced an emulsifying compound(s). Both fungi produced extracellular Mn-peroxidases, enzymes possibly involved in the fungal degradation of the pollutants. This is the first report on the ability of L. aphanocladii to degrade four-ring PAHs, anthraquinone-type dyes, and oil, with the simultaneous production of an extracellular Mn-peroxidase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ali S, Zhang C, Wang Z, Wang X, Wu J, Cuthbertson A, Shao Z, Qiu B (2017) Toxicological and biochemical basis of synergism between the entomopathogenic fungus Lecanicillium muscarium and the insecticide matrine against Bemisia tabaci (Gennadius). Sci Rep 20:46558

    Article  CAS  Google Scholar 

  • Aranda E (2016) Promising approaches towards biotransformation of polycyclic aromatic hydrocarbons with Ascomycota fungi. Curr Opinion Biotechn 38:1–8

    Article  CAS  Google Scholar 

  • Arun A, Raja P, Arthi R, Ananthi M, Kumar K, Eyini M (2008) Polycyclic aromatic hydrocarbons (PAHs) biodegradation by basidiomycetes fungi, Pseudomonas isolate, and their cocultures: comparative in vivo and in silico approach. Appl Biochem Biotechnol 151:132–142

    Article  CAS  PubMed  Google Scholar 

  • Bezalel L, Hadar Y, Cerniglia C (1997) Enzymatic mechanisms involved in phenanthrene degradation by the white rot fungus Pleurotus ostreatus. Appl Environ Microbiol 63:2495–2501

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bhardwaj G, Cameotra S, Chopra H (2013) Biosurfactant from fungi: a review. J Pet Environ Biotechnol 4. https://doi.org/10.4172/2157-7463.1000160

  • Cañero D, Roncero M (2008) Functional analyses of laccase genes from Fusarium oxysporum. Am. Phytopathol Soc 98:509–518

    Article  CAS  Google Scholar 

  • Castilho F, Torres R, Barbosa A, Dekker R, Garcia J (2009) On the diversity of the laccase gene: a phylogenetic perspective from Botryosphaeria rhodina (Ascomycota: Fungi) and other related taxa. Biochem Genet 47:80–91

    Article  CAS  PubMed  Google Scholar 

  • Cooper D, Goldenberg B (1987) Surface-active agents from two Bacillus species. Appl Environ Microbiol 53:224–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Criquet S, Joner E, Leyval C (2001) 2,7-Diaminofluorene is a sensitive substrate for detection and characterization of plant root peroxidase activities. Plant Sci 161:1063–1066

    Article  CAS  Google Scholar 

  • Dekker R, Barbosa A, Giese E, Godoy S, Covizzi L (2007) Influence of nutrients on enhancing laccase production by Botryosphaeria rhodina MAMB-05. Int Microbiol 10:177–185

    CAS  PubMed  Google Scholar 

  • Eichlerova I, Homolka L, Benada O, Kofronova O, Hubalek T, Nerud F (2007) Decolorization of Orange G and Remazol brilliant blue R by the white rot fungus Dichomitus squalens: toxicological evaluation and morphological study. Chemosphere 69:795–802

    Article  CAS  PubMed  Google Scholar 

  • Fariba M, Simin N, Alireza M, Ramin N, Doustmorad Z, Gholam K, Abdolkarim C (2010) Phytoremediation of petroleum-polluted soils: application of Polygonum aviculare and its root-associated (penetrated) fungal strains for bioremediation of petroleum-polluted soils. Ecotoxicol Environ Saf 73:613–619

    Article  CAS  Google Scholar 

  • Fenice M (2016) The psychrotolerant antarctic fungus Lecanicillium muscarium CCFEE 5003: a powerful producer of cold-tolerant chitinolytic enzymes. Molecules 21:447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernaud J, Marina A, González K, Vázquez J, Falcón M (2006) Production, partial characterization and mass spectrometric studies of the extracellular laccase activity from Fusarium proliferatum. Appl Microbiol Biotechnol 70:212–221

    Article  CAS  PubMed  Google Scholar 

  • Gingina GM, Mitina GV, Pavlushin VA (1990) Toxigenecity of Verticillium lecanii (Zimmermann) viegas natural isolates. Mycol Phytophatol 24:576–582 (in Russian)

    Google Scholar 

  • Gordon T, Okamoto D, Jacobson D (1989) Colonization of muskmelon and non-susceptible crops by Fusarium oxysporum F. sp. melonis and other species of Fusarium. Phytopathology 79:1095–1100

    Article  Google Scholar 

  • Harms H (2011) Untapped potential: exploiting fungi in bioremediation of hazardous chemicals. Nat Rev Microbiol 9:177–192

    Article  CAS  PubMed  Google Scholar 

  • Heinfling A, Martinez M, Martinez A, Bergbauer M, Szewzyk U (1998) Purification and characterization of peroxidases from dye-decolorizing fungus Bjerkandera adusta. FEMS Microbiol Lett 165:43–50

    Article  CAS  PubMed  Google Scholar 

  • Jacques R, Okeke B, Bento F, Teixeira A, Peralba M, Camargo F (2008) Microbial consortium bioaugmentation of a polycyclic aromatic hydrocarbons contaminated soil. Bioresour Technol 99:2637–2643

    Article  CAS  PubMed  Google Scholar 

  • Jager A, Croan S, Kirk T (1985) Production of ligninases and degradation of lignin in agitated submerged cultures of Phanerochaete chrysosporium. Appl Environ Microbiol 50:1274–1278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74

    Article  Google Scholar 

  • Kirk T, Croan S, Tien M, Murtagh K, Farrell R (1986) Production of multiple ligninases by Phanerochaete chrysosporium effect of selected growth condition and use mutant strain. Enzyme Microbial Technol 8:27–32

    Article  CAS  Google Scholar 

  • Krivobok S, Miriouchkine E, Seigle-Murandi F, Benoit-Guyod J-L (1998) Biodegradation of anthracene by soil fungi. Chemosphere 37:523–530

    Article  CAS  PubMed  Google Scholar 

  • Krzysko-Lupicka T, Sudol T (2008) Interactions between glyphosate and autochthonous soil fungi surviving in aqueous solution of glyphosate. Chemosphere 71:1386–1391

    Article  CAS  PubMed  Google Scholar 

  • Kwiatos N, Ryngajłło M, Bielecki S (2015) Diversity of laccase-coding genes in Fusarium oxysporum genomes. Front Microbiol 6:933

    Article  PubMed  PubMed Central  Google Scholar 

  • Lemanceau P, Bakker P, DeKogel W, Alabouvette C, Schippers B (1993) Antagonistic effect of nonpathogenic Fusarium oxysporum Fo47 and pseudobactin 358 upon pathogen Fusarium oxysporum F. sp. Dianthi. Appl Environ Microbiol 59:74–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leonowicz A, Grzywnowicz K (1981) Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microbial Technol 3:55–58

    Article  CAS  Google Scholar 

  • Liu W, Chao Y, Yang X, Bao H, Qian S (2004) Biodecolourization of azo, anthraquinonic and triphenylmethane dyes by white rot fungi and laccase-secreting engineered strain. J Ind Microbiol Biotechnol 31:127–132

    Article  CAS  PubMed  Google Scholar 

  • Morales P, Cáceres M, Scott F, Díaz-Robles L, Aroca G, Vergara-Fernández A (2017) Biodegradation of benzo[α]pyrene, toluene, and formaldehyde from the gas phase by a consortium of Rhodococcus erythropolis and Fusarium solani. Appl Microbiol Biotechnol 101:6765–6777

    Article  CAS  PubMed  Google Scholar 

  • Nikiforova SV, Pozdnyakova NN, Turkovskaya OV (2009) Emulsifying agent production during PAHs degradation by the white rot fungus Pleurotus ostreatus D1. Curr Microbiol 58:554–558

    Article  CAS  PubMed  Google Scholar 

  • Niku-Paavola M, Karhunen E, Salola P, Raunio V (1988) Ligninolytic enzymes of the white rot fungus Phlebia radiata. Biochem J 254:877–884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obruca S, Marova I, Matouskova P, Haronikova A, Lichnova A (2012) Production of lignocellulose-degrading enzymes employing Fusarium solani F-552. Folia Microbiol 57:221–227

    Article  CAS  Google Scholar 

  • Pinto A, Serrano C, Pires T, Mestrinho E, Dias L, Teixeira D, Caldeira A (2012) Degradation of terbuthylazine, difenoconazole and pendimethalin pesticides by selected fungi cultures. Sci Total Environ 435-436:402–410

    Article  CAS  PubMed  Google Scholar 

  • Polunina AG, Kushik GI (1977) Metody analiza organicheskogo veshchestva porod, nefti i Gaza (methods of analysis of organic matter in rocks, oil, and gas). In: Ryl’kov AV (ed) Tyumen’: Tr. Zap.-Sib. NIGNI, 122 (in Russian)

  • Pozdnyakova NN, Jarosz-Wilkolazka A, Polak J, Graz M, Turkovskaya OV (2015) Decolourisation of anthraquinone-and anthracene-type dyes by versatile peroxidases from Bjerkandera fumosa and Pleurotus ostreatus D1. Biocatal Biotransform 33:69–80

    Article  CAS  Google Scholar 

  • Sampedro I, D’Annibale A, Ocampo J, Stazi S, García-Romera I (2007) Solid-state cultures of Fusarium oxysporum transform aromatic components of olive-mill dry residue and reduce its phytotoxicity. Bioresour Technol 98:3547–3555

    Article  CAS  PubMed  Google Scholar 

  • Souza P, Grigoletto T, de Moraes L, Abreu L, Guimarães L, Santos C, Galvãom L, Cardoso P (2016) Production and chemical characterization of pigments in filamentous fungi. Microbiology 162:12–22

    Article  CAS  Google Scholar 

  • Thion C, Cebron A, Beguiristain T, Leyval C (2013) Inoculation of PAH-degrading strains of Fusarium solani and Arthrobacter oxydans in rhizospheric sand and soil microcosms: microbial interactions and PAH dissipation. Biodegradation 24:569–581

    Article  CAS  PubMed  Google Scholar 

  • Tien M, Kirk K (1984) Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc Natl Acad Sci U S A 81:2280–2284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vroumsia T, Steiman R, Seigle-Murandi F, Benoit-Guyod J-L (1999) Effects of culture parameters on the degradation of 2,4-dichlorophenoxyacetic acid (2,4-D) and 2,4-dichlorophenol (2,4-DCP) by selected fungi. Chemosphere 39:1397–1405

    Article  CAS  PubMed  Google Scholar 

  • Wong DWS (2009) Structure and action mechanism of ligninolytic enzymes. Appl Biochem Biotechnol 157:174–209

    Article  CAS  PubMed  Google Scholar 

  • Wua Y-R, Luo Z-H, Chow R, Vrijmoed L (2010a) Purification and characterization of an extracellular laccase from the anthracene-degrading fungus Fusarium solani MAS2. Bioresour Technol 101:9772–9777

    Article  CAS  Google Scholar 

  • Wua Y-R, Luo Z-H, Vrijmoed L (2010b) Biodegradation of anthracene and benzo[a]anthracene by two Fusarium solani strains isolated from mangrove sediments. Bioresour Technol 101:9666–9672

    Article  CAS  Google Scholar 

  • Zare R, Gams W (2001) A revision of Verticillium section Prostrata. IV. The genera Lecanicillium and Simplicillium gen. nov. Nova Hedwig 73:1–50

    Google Scholar 

  • Zhang X, Lin L, Chen M, Zhu Z, Yang W, Chen B, Yang X, An Q (2012) A nonpathogenic Fusarium oxysporum strain enhances phytoextraction of heavy metals by the hyperaccumulator Sedum alfredii Hance. J Hazard Mater 229-230:361–370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr. M.P. Chernyshova (IBPPM RAS) for gas chromatographic analysis. We are also grateful to Dmitry N. Tychinin for his assistance in preparation of the English text of this paper.

Funding

This research was supported by a grant from the Russian Science Foundation (project no. 16-14-00081).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Natalia N. Pozdnyakova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pozdnyakova, N.N., Varese, G.C., Prigione, V. et al. Degradative properties of two newly isolated strains of the ascomycetes Fusarium oxysporum and Lecanicillium aphanocladii. Int Microbiol 22, 103–110 (2019). https://doi.org/10.1007/s10123-018-0032-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-018-0032-z

Keywords

Navigation