Skip to main content
Log in

Biosorption of arsenic through bacteria isolated from Pakistan

  • Original Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

The aim of this study was to isolate arsenic-resistant bacteria and to further exploit it for remediation purposes. In the present study, we have isolated arsenic-resistant strain from ground water of Pakistan AT-01. The strain was cultivated at 37 °C in Luria Bertani broth supplemented with different concentrations of arsenate and arsenite. The minimum inhibitory concentration of arsenic against the bacterial isolate was 7 g/L (7000 mg/L) for arsenate and 1.4 g/L (1400 mg/L) for arsenite salt. The bacterial isolate was also characterized both on molecular and biochemical basis. The isolated strain belonged to the Pseudomonas aeruginosa. The high resistance against arsenic offered by the bacteria was exploited further for bioremediation purposes. The bacterial biomass generated from AT-01 strain was able to efficiently remove arsenic with 98% efficiency. Arsenic contamination of ground water is a widespread worldwide problem. The present study shows the potential of high arsenic-resistant bacteria for efficient arsenic removal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Andreoni V, Zanchi R, Cavalca L, Corsini A, Romagnoli C, Canzi E (2012) Arsenite oxidation in Ancylobacter dichloromethanicus As3-1b strain: detection of genes involved in arsenite oxidation and CO2 fixation. Curr Microbiol 65(2):212–218

    Article  CAS  PubMed  Google Scholar 

  • Anikó K-P et al (2014) Bioadsorption characteristics of Pseudomonas aeruginosa PAOI. J Serbian Chem Soc 79(4):495–508

    Article  CAS  Google Scholar 

  • Ayoob S, Gupta AK (2006) Fluoride in drinking water: a review on the status and stress effects. Crit Rev Environ Sci Technol 36(6):433–487

    Article  CAS  Google Scholar 

  • Barros Júnior L et al (2003) Biosorption of cadmium using the fungus Aspergillus niger. Braz J Chem Eng 20(3):229–239

    Article  Google Scholar 

  • Bibi S, Kamran MA, Sultana J, Farooqi A (2016) Occurrence and methods to remove arsenic and fluoride contamination in water. Environ Chem Lett p. 1–25

  • Currell M, Cartwright I, Raveggi M, Han D (2011) Controls on elevated fluoride and arsenic concentrations in groundwater from the Yuncheng Basin, China. Appl Geochem 26(4):540–552

    Article  CAS  Google Scholar 

  • Douraghi M, Ghasemi F, Dallal MM, Rahbar M, Rahimiforoushani A (2014) Molecular identification of Pseudomonas aeruginosa recovered from cystic fibrosis patients. J Prev Med Hyg 55(2):50–53

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooqi A, Masuda H, Siddiqui R, Naseem M (2009) Sources of arsenic and fluoride in highly contaminated soils causing groundwater contamination in Punjab, Pakistan. Arch Environ Contam Toxicol 56(4):693–706

    Article  CAS  PubMed  Google Scholar 

  • Farooqi A, Fatima S, and Rasool A, Geochemistry of fluoride and arsenic in groundwater of District Vehari, Punjab, Pakistan

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39(4):783–791

    Article  PubMed  Google Scholar 

  • Fernández M, Morel B, Ramos JL, Krell T (2016) Paralogous regulators ArsR1 and ArsR2 of Pseudomonas putida KT2440 as a basis for arsenic biosensor development. Appl Environ Microbiol 82(14):4133–4144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frank RS (2017) Handbook of water and wastewater treatment plant operations. CRC PRESS

  • Giri A et al (2013) Biosorption of arsenic (III) from aqueous solution by living cells of Bacillus cereus. Environ Sci Pollut Res 20(3):1281–1291

    Article  CAS  Google Scholar 

  • Goswami R, Mukherjee S, Rana VS, Saha DR, Raman R, Padhy PK, Mazumder S (2015) Isolation and characterization of arsenic-resistant bacteria from contaminated water-bodies in West Bengal, India. Geomicrobiol J 32(1):17–26

    Article  CAS  Google Scholar 

  • Huisman J, Weghuis MO, and Gonzalez-Contreras P (2011) Biotechnology based processes for arsenic removal.

  • Joshi D et al (2008) Arsenic accumulation by Pseudomonas stutzeri and its response to some thiol chelators. Environ Health Prev Med 13(5):257–263

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kruger MC, Bertin PN, Heipieper HJ, Arsène-Ploetze F (2013) Bacterial metabolism of environmental arsenic—mechanisms and biotechnological applications. Appl Microbiol Biotechnol 97(9):3827–3841

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33(7):1870–1874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nei M and Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press

  • Ng K-S, Ujang Z, Le-Clech P (2004) Arsenic removal technologies for drinking water treatment. Rev Environ Sci Biotechnol 3(1):43–53

    Article  CAS  Google Scholar 

  • Pepi M, Volterrani M, Renzi M, Marvasi M, Gasperini S, Franchi E, Focardi SE (2007) Arsenic-resistant bacteria isolated from contaminated sediments of the Orbetello Lagoon, Italy, and their characterization. J Appl Microbiol 103(6):2299–2308

    Article  CAS  PubMed  Google Scholar 

  • Pepi M, et al. (2011) Arsenic-resistant Pseudomonas spp. and Bacillus sp. bacterial strains reducing As (V) to As (III), isolated from Alps soils, Italy. 56(1): p. 29–35

  • Prabhakaran P, Ashraf MA, Aqma WS (2016) Microbial stress response to heavy metals in the environment. RSC Adv 6(111):109862–109877

    Article  CAS  Google Scholar 

  • Qin J, Rosen BP, Zhang Y, Wang G, Franke S, Rensing C (2006) Arsenic detoxification and evolution of trimethylarsine gas by a microbial arsenite S-adenosylmethionine methyltransferase. Proc Natl Acad Sci U S A 103(7):2075–2080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4(4):406–425

    CAS  PubMed  Google Scholar 

  • Sandhu SS (1976) Colorimetric method for the determination of arsenic (III) in potable water. Analyst 101(1208):856–859

    Article  CAS  PubMed  Google Scholar 

  • Satyapal G et al (2016) Potential role of arsenic resistant bacteria in bioremediation: current status and future prospects. J Microb Biochem Technol 8(3):256–258

    Article  CAS  Google Scholar 

  • Scanlon BR, Nicot JP, Reedy RC, Kurtzman D, Mukherjee A, Nordstrom DK (2009) Elevated naturally occurring arsenic in a semiarid oxidizing system, Southern High Plains Aquifer, Texas, USA. Appl Geochem 24(11):2061–2071

    Article  CAS  Google Scholar 

  • Shaheen SM, Rinklebe J, Frohne T, White JR, DeLaune RD (2016) Redox effects on release kinetics of arsenic, cadmium, cobalt, and vanadium in Wax Lake deltaic freshwater marsh soils. Chemosphere 150:740–748

    Article  CAS  PubMed  Google Scholar 

  • Shahid M, Khalid M, Dumat C, Khalid S, Niazi NK, Imran M et al (2017) Arsenic level and risk assessment of groundwater in Vehari, Punjab Province, Pakistan. Exposure and Health p. 1–11. https://doi.org/10.1007/s12403-017-0257-7

  • Shakoor MB et al (2015) Unraveling health risk and speciation of arsenic from groundwater in rural areas of Punjab, Pakistan. Int J Environ Res Public Health 12(10):12371–12390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shakoor MB, Bibi I, Niazi NK, Shahid M, Nawaz MF, Farooqi A, Naidu R, Rahman MM, Murtaza G, Lüttge A (2018) The evaluation of arsenic contamination potential, speciation and hydrogeochemical behaviour in aquifers of Punjab, Pakistan. Chemosphere 199:737–746

    Article  CAS  PubMed  Google Scholar 

  • Straub AC, Stolz DB, Vin H, Ross MA, Soucy NV, Klei LR, Barchowsky A (2007) Low level arsenic promotes progressive inflammatory angiogenesis and liver blood vessel remodeling in mice. Toxicol Appl Pharmacol 222(3):327–336

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Zobia Noureen for her technical support during this study.

Funding

This project is funded by the Higher Education Commission of Pakistan, grant no. 20-3777/R&D/HEC/14.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aamira Tariq.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest

Electronic supplementary material

ESM 1

(DOCX 64 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tariq, A., Ullah, U., Asif, M. et al. Biosorption of arsenic through bacteria isolated from Pakistan. Int Microbiol 22, 59–68 (2019). https://doi.org/10.1007/s10123-018-0028-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-018-0028-8

Keywords

Navigation