Skip to main content

Advertisement

Log in

Variation and evolution of plant virus populations

  • Review Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Over the last 15 years, interest in plant virus evolution has re-emerged, as shown by the increasing number of papers published on this subject. In recent times, research in plant virus evolution has been viewed from a molecular, rather than populational, standpoint, and there is a need for work aimed at understanding the processes involved in plant virus evolution. However, accumulated data from analyses of experimental and natural populations of plant viruses are beginning to delineate some trends that often run contrary to accepted opinion: (1) high mutation rates are not necessarily adaptive, as a large fraction of the mutations are deleterious or lethal; (2) in spite of high potential for genetic variation, populations of plant viruses are not highly variable, and genetic stability is the rule rather than the exception; (3) the degree of constriction of genetic variation in virus-encoded proteins is similar to that in their eukaryotic hosts and vectors; and (4) in spite of huge census sizes of plant virus populations, selection is not the sole factor that shapes their evolution, and genetic drift may be important. Here, we review recent advances in understanding plant virus evolution, and describe the experimental and analytical methods most suited to this purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldahoud R, Dawson WO, Jones GE (1989) Rapid, random evolution of the genetic structure of replicating tobacco mosaic virus populations. Intervirology 30:227–233

    PubMed  Google Scholar 

  2. Al-Kaff N, Covey SN (1994) Variation in biological properties of cauliflower mosaic virus clones. J Gen Virol 75:3137–3145

    CAS  Google Scholar 

  3. Altschuh D, Lesk AM, Bloomer AC, Klug A (1987) Correlation of co-ordinated amino acid substitutions with function in viruses related to tobacco mosaic virus. J Mol Biol 193:693–707

    CAS  Google Scholar 

  4. Ambrós S, Hernández C, Desvignes JC, Flores R (1998) Genomic structure of three phenotypically different isolates of peach latent mosaic viroid: implications of the existence of constraints limiting the heterogeneity of viroid quasispecies. J Virol 72:7397–7406

    PubMed  Google Scholar 

  5. Anderson RM, May RM (1982) Coevolution of hosts and parasites. Parasitology 85:411–426

    PubMed  Google Scholar 

  6. Aranda MA, Fraile A, García-Arenal F, Malpica JM (1995) Experimental evaluation of the ribonuclease protection assay method for the assessment of genetic heterogeneity in populations of RNA viruses. Arch Virol 140:1373–1383

    CAS  Google Scholar 

  7. Argüello-Astorga G, Herrera-Estrella L, Rivera-Bustamante R (1994) Experimental and theoretical definition of geminivirus origin of replication. Plant Mol Biol 26:553–556

    PubMed  Google Scholar 

  8. Ayllón MA, Rubio L, Moya A, Guerri J, Moreno P (1999) The haplotype distribution of two genes of citrus tristeza virus is altered after host change or aphid transmission. Virology 255:32–39

    PubMed  Google Scholar 

  9. Bacher JW, Warkentin D, Ramsdell D, Hancock F (1994) Selection versus recombination: what is maintaining identity in the 3′ termini of blueberry leaf mottle nepovirus RNA1 and RNA2? J Gen Virol 75:2133–2137

    CAS  Google Scholar 

  10. Carrington JC, Kasschau KD, Johansen LK (2001) Activation and suppression of RNA silencing by plant viruses. Virology 281:1–5

    CAS  Google Scholar 

  11. Chao L (1990) Fitness of RNA virus decreased by Muller's ratchet. Nature 348:454–455

    CAS  Google Scholar 

  12. Chao L, Rang CU, Wong LE (2002) Distribution of spontaneous mutants and inferences about the replication mode of the RNA bacteriophage φ6. J Virol 76:3276–3281

    CAS  Google Scholar 

  13. Domingo E (2002) Quasispecies theory in virology. J Virol 76:463–465

    CAS  Google Scholar 

  14. Domingo E, Holland JJ (1997) RNA virus mutations and fitness for survival. Annu Rev Microbiol 51:151–178

    CAS  Google Scholar 

  15. Donis-Keller H, Browning KS, Clark JM (1981) Sequence heterogeneity in satellite tobacco necrosis virus RNA. Virology 110:43–54

    CAS  Google Scholar 

  16. Drake JW, Holland JJ (1999) Mutation rates among RNA viruses. Proc Natl Acad Sci USA 96:13910–13913

    CAS  Google Scholar 

  17. Drake JW, Charlesworth B, Charlesworth D, Crow JF (1998) Rates of spontaneous mutation. Genetics 148:1667–1686

    Google Scholar 

  18. Duarte EA, Clarke DK, Moya A, Domingo E, Holland JJ (1992) Rapid fitness losses in mammalian RNA virus clones due to Muller's ratchet. Proc Natl Acad Sci USA 89:6015–6019

    CAS  Google Scholar 

  19. Escriu F, Fraile A, García-Arenal F (2000) Evolution of virulence in natural populations of the satellite RNA of cucumber mosaic virus. Phytopathology 90:480–485

    CAS  Google Scholar 

  20. Escriu F, Perry KL, García-Arenal F (2000) Transmissibility of cucumber mosaic virus by Aphis gossypii correlates with viral accumulation and is affected by the presence of its satellite RNA. Phytopathology 90:1068–1072

    CAS  Google Scholar 

  21. Escriu F, Fraile A, García-Arenal F (2003) The evolution of virulence in a plant virus. Evolution 57:755–765

    Google Scholar 

  22. Fereres A, Lister RM, Araya JE, Foster JE (1989) Development and reproduction of the English grain aphid (Homoptera:Aphididae), on wheat cultivars infected with barley yellow dwarf virus. Environ Entomol 18:388–393

    Google Scholar 

  23. Fereres A, Kampmeier GE, Irwin ME (1999) Aphid attraction and preference for soybean and pepper plants infected with Potyviridae. Ann Entomol Soc Am 92:542–548

    Google Scholar 

  24. Fraile A, García-Arenal F (1991) Secondary structure as a constraint on the evolution of a plant viral satellite RNA. J Mol Biol 221:1065–1069

    CAS  Google Scholar 

  25. Fraile A, Alonso-Prados JL, Aranda MA, Bernal JJ, Malpica JM, García-Arenal F (1997) Genetic exchange by recombination or reassortment is infrequent in natural populations of a tripartite RNA plant virus. J Virol 71:934–940

    CAS  Google Scholar 

  26. Fraile A, Escriu F, Aranda MA, Malpica JM, Gibbs AJ, García-Arenal F (1997) A century of tobamovirus evolution in an Australian population of Nicotiana glauca. J Virol 71:8316–8320

    CAS  Google Scholar 

  27. Friess N, Maillet J (1996) Influence of cucumber mosaic virus infection on the intraspecific competitive ability and fitness of purslane (Portulaca oleracea). New Phytol 132:103–111

    Google Scholar 

  28. Froissart R, Michalakis Y, Blanc S (2002) Helper component-transcomplementation in the vector transmission of plant viruses. Phytopathology 92:576–579

    Google Scholar 

  29. Frost SDW, Dumaurier MJ, Wain-Hobson S, Brown AJ (2001) Genetic drift and within-host metapopulation dynamics of HIV-1 infection. Proc Natl Acad Sci USA 98:6975–6980

    CAS  Google Scholar 

  30. García-Arenal F, McDonald B (2003) An analysis of the durability of resistance of plant to viruses. Phytopathology 93:941–952

    Google Scholar 

  31. García-Arenal F, Palukaitis P (1999) Structure and functional relationships of satellite RNAs of cucumber mosaic virus. Curr Top Microbiol Immunol 239:37–63

    PubMed  Google Scholar 

  32. García-Arenal F, Palukaitis P, Zaitlin M (1984) Strains and mutants of tobacco mosaic virus are both found in virus derived from single-lesion-passaged inoculum. Virology 132:131–137

    Google Scholar 

  33. García-Arenal F, Fraile A, Malpica JM (2001). Variability and genetic structure of plant virus populations. Annu Rev Phytopathol 39:157–186

    PubMed  Google Scholar 

  34. Gibbs AJ, Keese PL, Gibbs MJ, García-Arenal F (1999) Plant virus evolution: past, present and future. In: Domingo E, Webster R, Holland JJ (eds) Origin and evolution of viruses. Academic Press, San Diego, Calif., pp 263–285

  35. Grogan DW, Carver GT, Drake JW (2001) Genetic fidelity under harsh conditions: analysis of spontaneous mutation in the thermoacidophilic archaeon Sulfolobus acidocaldarius. Proc Natl Acad Sci USA 98:7928–7933

    CAS  Google Scholar 

  36. Hall JS, French R, Hein GL, Morris TJ, Stenger DC (2001) Three distinct mechanisms facilitate genetic isolation of sympatric wheat streak mosaic virus lineages. Virology 282:230–236

    CAS  Google Scholar 

  37. Harrison BD (1956) The infectivity of extracts made from leaves at intervals after inoculation with viruses. J Gen Microbiol 15:210–220

    CAS  Google Scholar 

  38. Harrison BD (1981) Plant virus ecology: ingredients, interactions and environment influences. Ann Appl Biol 99:195–209

    Google Scholar 

  39. Harrison BD (2002) Virus variation in relation to resistance breaking in plants. Euphytica 124:181–192

    CAS  Google Scholar 

  40. Harrison BD, Robinson DJ (1999) Natural genomic and antigenic variation in whitefly-transmitted geminiviruses (begomoviruses). Annu Rev Phytopathol 37:369–398

    CAS  Google Scholar 

  41. Hibino H (1996). Biology and epidemiology of rice viruses. Annu Rev Phytopathol 34:249–274

    CAS  Google Scholar 

  42. Holmes EC, Moya A (2001) Is the quasispecies concept relevant to RNA viruses? J Virol 76:460–465

    Article  Google Scholar 

  43. Kaper JM, Tousignant ME, Steen MT (1988) Cucumber mosaic virus-associated RNA5: XI. Comparison of 14 CARNA 5 variants relates ability to induce tomato necrosis to a conserved nucleotide sequence. Virology 163:284–292

    CAS  Google Scholar 

  44. Koenig R, Lüddecke P, Haeberlé AM (1995) Detection of beet necrotic yellow vein virus strains, variants and mixed infections by examining single-strand conformation polymorphisms of immunocapture RT-PCR products. J Gen Virol 76:2051–2055

    CAS  Google Scholar 

  45. Kofalvi SA, Marcos JF, Cañizares MC, Pallás V, Candresse T (1997) Hop stunt viroid (HSVd) sequence variants from Prunus species: evidence for recombination between HSVd isolates. J Gen Virol 78:3177–3186

    CAS  Google Scholar 

  46. Kunkel LO (1947) Variation in phytopathogenic viruses. Annu Rev Microbiol 1:85–100

    Article  Google Scholar 

  47. Kurath G, Palukaitis P (1989) RNA sequence heterogeneity in natural populations of three satellite RNAs of cucumber mosaic virus. Virology 173:231–240

    CAS  Google Scholar 

  48. Kurath G, Palukaitis P (1990) Serial passage of infectious transcripts of a cucumber mosaic virus satellite RNA clone results in sequence heterogeneity. Virology 173:8–15

    Google Scholar 

  49. Legg JP, Thresh JM (2000) Cassava mosaic virus disease in East Africa: a dynamic disease in a changing environment. Virus Res 71:135–49

    CAS  Google Scholar 

  50. Li W-H (1997) Molecular evolution. Sinauer, Sunderland, Mass.

  51. Lynch MR, Burger R, Butcher D, Gabriel W (1993) The mutational meltdown in asexual populations. J Hered 84:339–344

    CAS  Google Scholar 

  52. Malpica JM, Fraile A, Moreno I, Obies CI, Drake JW, García-Arenal F (2002) The rate and character of spontaneous mutation in an RNA virus. Genetics 162:1505–1511

    CAS  Google Scholar 

  53. Mansky LM, Durand DP, Hill JH (1995) Evidence for complementation of plant potyvirus pathogenic strains in mixed infection. J Phytopathol 143:247–250

    Google Scholar 

  54. Maskell LC, Raybould AF, Cooper JI, Edwards M-Ll, Gray AJ (1999) Effects of turnip mosaic and turnip yellow mosaic virus on the survival, growth and reproduction of wild cabbage (Brassica oleracea). Ann Appl Biol 135:401–407

    Google Scholar 

  55. Mastari J, Lapierre H, Dessens JT (1998) Asymmetrical distribution of barley yellow dwarf virus PAV variants between host plant species. Phytopathology 88:818–821

    CAS  Google Scholar 

  56. Monci F, Sánchez-Campos S, Navas-Castillo J, Moriones E (2002) A natural recombinant between the geminiviruses tomato yellow leaf curl Sardinia virus and tomato yellow leaf curl virus exhibits a novel pathogenic phenotype and is becoming prevalent in Spanish populations. Virology 303:317–326

    CAS  Google Scholar 

  57. Moreno IM, Malpica JM, Rodríguez-Cerezo E, García-Arenal F (1997) A mutation in tomato aspermy cucumovirus that abolishes cell-to-cell movement is maintained to high levels in the viral RNA population by complementation. J Virol 71:9157–9162

    CAS  Google Scholar 

  58. Moury B, Morel C, Johansen E, Jacquemond M. (2002) Evidence for diversifying selection in potato virus Y and in the coat protein of other potyviruses. J Gen Virol 83:2563–2573

    CAS  Google Scholar 

  59. Moya A, Rodríguez-Cerezo E, García-Arenal F (1993) Genetic structure of natural populations of the plant RNA virus tobacco mild green mosaic virus. Mol Biol Evol 10:449–456

    CAS  Google Scholar 

  60. Naidu RA, Kimmins FM, Deom CM, Subrahmanyam P, Chiyembekeza AJ, van der Merwe PJA (1999) Groundnut rosette, a virus disease affecting groundnut production in Sub-Saharan Africa. Plant Dis 83:700–709

    Google Scholar 

  61. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

  62. Nei M, Tajima F (1981) DNA polymorphism detectable by restriction endonucleases. Genetics 97:145–163

    Google Scholar 

  63. Pathak VK, Temin HM (1990) Broad spectrum of in vivo forward mutations, hypermutations, and mutational hotspots in a retroviral shuttle vector after a single replication cycle: substitutions, frameshifts, and hypermutations. Proc Natl Acad Sci USA 87:6019–6023

    CAS  Google Scholar 

  64. Pelham J, Fletcher JT, Hawkins JH (1970) The establishment of a new strain of tobacco mosaic virus resulting from the use of resistant varieties of tomato. Ann Appl Biol 65:293–297

    Google Scholar 

  65. Perry KL, Francki RIB (1992) Insect-mediated transmission of mixed and reassorted cucumovirus genomic RNAs. J Gen Virol 73:2105–2114

    CAS  Google Scholar 

  66. Raybould AF, Alexander MJ, Mitchell E, Thurston MI, Pallet DW, Hunter P, Walsh JA, Edwards M-L, Jones AME, Moyes CI, Gray AJ, Cooper JI (2003) The ecology of turnip mosaic virus in wild populations of Brassica species. In: Hails RS, Beringer JE, Godfray HCJ (eds) Genes in the environment. Blackwell, Oxford, UK

  67. Reddy DVR, Black LM (1977) Isolation and replication of mutant populations of wound tumor virions lacking certain genome segments. Virology 80:336–346

    CAS  Google Scholar 

  68. Rodríguez-Cerezo E, García-Arenal F (1989) Genetic heterogeneity of the RNA genome population of the plant virus U5-TMV. Virology 170:418–423

    PubMed  Google Scholar 

  69. Roossinck MJ (1997) Mechanisms of plant virus evolution. Annu Rev Phytopathol 35:191–209

    CAS  Google Scholar 

  70. Sacristán S, Malpica JM, Fraile A, García-Arenal F (2003) Estimation of population bottlenecks during systemic movement of Tobacco mosaic virus in tobacco plants. J Virol 77:9906–9911

    Article  PubMed  Google Scholar 

  71. Skotnicki ML, Mackenzie AM, Gibbs AJ (1996) Genetic variation in populations of kennedya yellow mosaic tomyvirus. Arch Virol 141:99–110

    CAS  Google Scholar 

  72. Tepfer M (2002) Risk assessment of virus-resistant transgenic plants. Annu Rev Phytopathol 40:467–491

    CAS  Google Scholar 

  73. VanRegenmortel MHV (1982) Serology and immunochemistry of plant viruses. Academic Press, New York

  74. Visvader JE, Symons RH (1985) Eleven new sequence variants of citrus exocortis viroid and the correlation of sequence with pathogenicity. Nucleic Acid Res 13:2907–2920

    CAS  Google Scholar 

  75. White PS, Morales FJ, Roossinck MJ (1995) Interspecific reassortment in the evolution of a cucumovirus. Virology 207:334–337

    CAS  Google Scholar 

  76. Yarwood CE (1979) Host passage effects with plant viruses. Adv Virus Res 25:169–190

    CAS  Google Scholar 

Download references

Acknowledgements

Research on virus evolution in our laboratories is supported by grants AG2000–1299 and AGL2002–00743, MCYT, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando García-Arenal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Arenal, F., Fraile, A. & Malpica, J.M. Variation and evolution of plant virus populations. Int Microbiol 6, 225–232 (2003). https://doi.org/10.1007/s10123-003-0142-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-003-0142-z

Keywords

Navigation