Advertisement

Gastric Cancer

, Volume 21, Issue 4, pp 617–631 | Cite as

Kallistatin inhibits lymphangiogenesis and lymphatic metastasis of gastric cancer by downregulating VEGF-C expression and secretion

  • Caiqi Ma
  • Chuanghua Luo
  • Haofan Yin
  • Yang Zhang
  • Wenjun Xiong
  • Ting Zhang
  • Tianxiao Gao
  • Xi Wang
  • Di Che
  • Zhenzhen Fang
  • Lei Li
  • Jinye Xie
  • Mao Huang
  • Liuqing Zhu
  • Ping Jiang
  • Weiwei Qi
  • Ti Zhou
  • Zhonghan Yang
  • Wei Wang
  • Jianxing Ma
  • Guoquan Gao
  • Xia Yang
Original Article

Abstract

Background

Tumor-induced lymphangiogenesis and lymphatic metastasis are predominant during the metastasis of many types of cancers. However, the endogenous inhibitors that counterbalance the lymphangiogenesis and lymphatic metastasis of tumors have not been well evaluated. Kallistatin has been recognized as an endogenous angiogenesis inhibitor.

Methods and results

Our recent study showed for the first time that the lymphatic vessel density (LVD) was reduced in lung and stomach sections from kallistatin-overexpressing transgenic mice. Kallistatin expresses anti-lymphangiogenic activity by inhibiting the proliferation, migration, and tube formation of human lymphatic endothelial cells (hLECs). Therefore, the present study focuses on the relationships of changes in kallistatin expression with the lymphangiogenesis and lymphatic metastasis of gastric cancer and its underlying mechanisms. Our results revealed that the expression of kallistatin in cancer tissues, metastatic lymph nodes, and plasma of gastric cancer patients was significantly downregulated and that the plasma level of kallistatin was negatively associated with the phase of lymph node metastasis. Furthermore, treatment with kallistatin recombinant protein decreased LVD and lymph node metastases in the implanted gastric xenograft tumors of nude mice. Mechanically, kallistatin suppressed the lymphangiogenesis and lymphatic metastasis by downregulating VEGF-C expression and secretion through the LRP6/IKK/IҡB/NF-ҡB signaling pathway in gastric cancer cells.

Conclusions

These findings demonstrated that kallistatin functions as an endogenous lymphangiogenesis inhibitor and has an important part in the lymphatic metastasis of gastric cancer.

Keywords

Kallistatin Lymphangiogenesis LRP6 NF-ҡB VEGF-C Lymph node metastasis Gastric cancer 

Notes

Acknowledgements

This study was supported by National Nature Science Foundation of China, Grant Numbers: 81572342, 81770808, 81600641, 81471033, 81370945, 81400639, 81570871, 81570764; National Key Sci-Tech Special Project of China, Grant Numbers: 2013ZX09102053, 2015GKS355. Program for Doctoral Station in University, Grant Number: 20130171110053; Key Project of Nature Science Foundation of Guangdong Province, China, Grant Numbers: 2015A030311043, 2016A030311035. Guandong Natural Science Fund, Grant Numbers: 2014A030313073, 2015A030313103, 2015A030313029. Guandong Science and Technology Project (2014A020212023, 2015B090903063, 2017A020215075); Key Sci-tech Research Project of Guangzhou Municipality, China, Grant Numbers: 2014J4100162, 201508020033, 2016A020214001, 201607010200, 201707010084; Changjiang Scholars and Innovative Research Team in University, number 985, project PCSIRT 0947; Fundamental Research Funds for the Central Universities of China (youth program 13ykpy06, 14ykpy05, 16ykpy24). 2017 Milstein Medical Asian American Partnership Foundation Research Project Award in Translational Medicine. The funding agencies had no role in study design, data collection, and analysis; decision to publish; or preparation of the manuscript.

Author contributions

X.Y. and G.G. designed the experiments and revised the manuscript; C.M., C.L., and H.Y. carried out the majority of the experiments and analyzed the data; C.M. organized the figures and wrote the manuscript; others participated in the experiments. All authors read and approved the final manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest, including relevant financial interests, activities, relationships, or affiliations.

Ethical standards

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1964 and later versions. Informed consent or a substitute for it was obtained from all patients included in the study.

References

  1. 1.
    Guggenheim DE, Shah MA. Gastric cancer epidemiology and risk factors. J Surg Oncol. 2013;107(3):230–6.CrossRefPubMedGoogle Scholar
  2. 2.
    Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30.CrossRefPubMedGoogle Scholar
  3. 3.
    Tammela T, Enholm B, Alitalo K, Paavonen K. The biology of vascular endothelial growth factors. Cardiovasc Res. 2005;65(3):550–63.CrossRefPubMedGoogle Scholar
  4. 4.
    Yonemura Y, Endo Y, Tabata K, Kawamura T, Yun HY, Bandou E, et al. Role of VEGF-C and VEGF-D in lymphangiogenesis in gastric cancer. Int J Clin Oncol. 2005;10(5):318–27.CrossRefPubMedGoogle Scholar
  5. 5.
    Tammela T, Alitalo K. Lymphangiogenesis: molecular mechanisms and future promise. Cell. 2010;140(4):460–76.CrossRefPubMedGoogle Scholar
  6. 6.
    Paduch R. The role of lymphangiogenesis and angiogenesis in tumor metastasis. Cell Oncol (Dordr). 2016;39(5):397–410.CrossRefGoogle Scholar
  7. 7.
    Scavelli C, Vacca A, Di Pietro G, Dammacco F, Ribatti D. Crosstalk between angiogenesis and lymphangiogenesis in tumor progression. Leukemia. 2004;18(6):1054–8.CrossRefPubMedGoogle Scholar
  8. 8.
    Streit M, Detmar M. Angiogenesis, lymphangiogenesis, and melanoma metastasis. Oncogene. 2003;22(20):3172–9.CrossRefPubMedGoogle Scholar
  9. 9.
    Zhang L, Zhou F, Han W, Shen B, Luo J, Shibuya M, et al. VEGFR-3 ligand-binding and kinase activity are required for lymphangiogenesis but not for angiogenesis. Cell Res. 2010;20(12):1319–31.CrossRefPubMedGoogle Scholar
  10. 10.
    Karkkainen MJ, Haiko P, Sainio K, Partanen J, Taipale J, Petrova TV, et al. Vascular endothelial growth factor C is required for sprouting of the first lymphatic vessels from embryonic veins. Nat Immunol. 2004;5(1):74–80.CrossRefPubMedGoogle Scholar
  11. 11.
    Zhao YC, Ni XJ, Wang MH, Zha XM, Zhao Y, Wang S. Tumor-derived VEGF-C, but not VEGF-D, promotes sentinel lymph node lymphangiogenesis prior to metastasis in breast cancer patients. Med Oncol. 2012;29(4):2594–600.CrossRefPubMedGoogle Scholar
  12. 12.
    Chai KX, Chen LM, Chao J, Chao L. Kallistatin: a novel human serine proteinase inhibitor. Molecular cloning, tissue distribution, and expression in Escherichia coli. J Biol Chem. 1993;268(32):24498–505.PubMedGoogle Scholar
  13. 13.
    Miao RQ, Agata J, Chao L, Chao J. Kallistatin is a new inhibitor of angiogenesis and tumor growth. Blood. 2002;100(9):3245–52.CrossRefPubMedGoogle Scholar
  14. 14.
    Lu SL, Tsai CY, Luo YH, Kuo CF, Lin WC, Chang YT, et al. Kallistatin modulates immune cells and confers anti-inflammatory response to protect mice from group A streptococcal infection. Antimicrob Agents Chemother. 2013;57(11):5366–72.CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Yin H, Gao L, Shen B, Chao L, Chao J. Kallistatin inhibits vascular inflammation by antagonizing tumor necrosis factor-alpha-induced nuclear factor kappaB activation. Hypertension. 2010;56(2):260–7.CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chao J, Stallone JN, Liang YM, Chen LM, Wang DZ, Chao L. Kallistatin is a potent new vasodilator. J Clin Invest. 1997;100(1):11–7.CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Tse LY, Sun X, Jiang H, Dong X, Fung PW, Farzaneh F, et al. Adeno-associated virus-mediated expression of kallistatin suppresses local and remote hepatocellular carcinomas. J Gene Med. 2008;10(5):508–17.CrossRefPubMedGoogle Scholar
  18. 18.
    Diao Y, Ma J, Xiao WD, Luo J, Li XY, Chu KW, et al. Inhibition of angiogenesis and HCT-116 xenograft tumor growth in mice by kallistatin. World J Gastroenterol. 2007;13(34):4615–9.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Ma C, Yin H, Zhong J, Zhang Y, Luo C, Che D, et al. Kallistatin exerts anti-lymphangiogenic effects by inhibiting lymphatic endothelial cell proliferation, migration and tube formation. Int J Oncol. 2017;50(6):2000–10.CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Sun HM, Mi YS, Yu FD, Han Y, Liu XS, Lu S, et al. SERPINA4 is a novel independent prognostic indicator and a potential therapeutic target for colorectal cancer. Am J Cancer Res. 2016;6(8):1636–49.PubMedPubMedCentralGoogle Scholar
  21. 21.
    Zhu B, Lu L, Cai W, Yang X, Li C, Yang Z, et al. Kallikrein-binding protein inhibits growth of gastric carcinoma by reducing vascular endothelial growth factor production and angiogenesis. Mol Cancer Ther. 2007;6(12 pt 1):3297–306.CrossRefPubMedGoogle Scholar
  22. 22.
    Lin C, Song L, Gong H, Liu A, Lin X, Wu J, et al. Nkx2-8 downregulation promotes angiogenesis and activates NF-kappaB in esophageal cancer. Cancer Res. 2013;73(12):3638–48.CrossRefPubMedGoogle Scholar
  23. 23.
    Huang KF, Huang XP, Xiao GQ, Yang HY, Lin JS, Diao Y. Kallistatin, a novel anti-angiogenesis agent, inhibits angiogenesis via inhibition of the NF-kappaB signaling pathway. Biomed Pharmacother. 2014;68(4):455–61.CrossRefPubMedGoogle Scholar
  24. 24.
    Liu X, Zhang B, McBride JD, Zhou K, Lee K, Zhou Y, et al. Antiangiogenic and antineuroinflammatory effects of kallistatin through interactions with the canonical Wnt pathway. Diabetes. 2013;62(12):4228–38.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Chao J, Chao L. Kallistatin in blood pressure regulation transgenic and somatic gene delivery studies. Trends Cardiovasc Med. 1997;7(8):307–11.CrossRefPubMedGoogle Scholar
  26. 26.
    Jenkins AJ, McBride JD, Januszewski AS, Karschimkus CS, Zhang B, O’Neal DN, et al. Increased serum kallistatin levels in type 1 diabetes patients with vascular complications. J Angiogenes Res. 2010;2:19.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Xu Y, Zhao H, Zheng Y, Gu Q, Ma J, Xu X. A novel antiangiogenic peptide derived from hepatocyte growth factor inhibits neovascularization in vitro and in vivo. Mol Vis. 2010;16:1982–95.PubMedPubMedCentralGoogle Scholar
  28. 28.
    Jiang X, Li H, Qiao H, Jiang H, Xu R, Sun X. Combining kallistatin gene therapy and meloxicam to treat hepatocellular carcinoma in mice. Cancer Sci. 2009;100(11):2226–33.CrossRefPubMedGoogle Scholar
  29. 29.
    Liu L, Lin C, Liang W, Wu S, Liu A, Wu J, et al. TBL1XR1 promotes lymphangiogenesis and lymphatic metastasis in esophageal squamous cell carcinoma. Gut. 2015;64(1):26–36.CrossRefPubMedGoogle Scholar
  30. 30.
    Hayden MS, Ghosh S. NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev. 2012;26(3):203–34.CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang T, Shi F, Wang J, Liu Z, Su J. Kallistatin suppresses cell proliferation, invasion, and promotes apoptosis in cervical cancer through blocking NF-kappaB signaling. Oncol Res. 2016.  https://doi.org/10.3727/096504016X14799180778233.CrossRefPubMedGoogle Scholar
  32. 32.
    Oeckinghaus A, Hayden MS, Ghosh S. Crosstalk in NF-kappaB signaling pathways. Nat Immunol. 2011;12(8):695–708.CrossRefPubMedGoogle Scholar
  33. 33.
    Brown SD, Twells RC, Hey PJ, Cox RD, Levy ER, Soderman AR, et al. Isolation and characterization of LRP6, a novel member of the low density lipoprotein receptor gene family. Biochem Biophys Res Commun. 1998;248(3):879–88.CrossRefPubMedGoogle Scholar
  34. 34.
    Tamai K, Semenov M, Kato Y, Spokony R, Liu C, Katsuyama Y, et al. LDL-receptor-related proteins in Wnt signal transduction. Nature. 2000;407(6803):530–5.CrossRefPubMedGoogle Scholar
  35. 35.
    Acebron SP, Niehrs C. Beta-catenin-independent roles of Wnt/lrp6 signaling. Trends Cell Biol. 2016;26(12):956–67.CrossRefPubMedGoogle Scholar
  36. 36.
    Perrody E, Abrami L, Feldman M, Kunz B, Urbe S, van der Goot FG. Ubiquitin-dependent folding of the Wnt signaling coreceptor LRP6. Elife. 2016.  https://doi.org/10.7554/eLife.19083 (eng).PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Zhang J, Yang Z, Li P, Bledsoe G, Chao L, Chao J. Kallistatin antagonizes Wnt/beta-catenin signaling and cancer cell motility via binding to low-density lipoprotein receptor-related protein 6. Mol Cell Biochem. 2013;379(1-2):295–301.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Hong Y, Manoharan I, Suryawanshi A, Shanmugam A, Swafford D, Ahmad S, et al. Deletion of LRP5 and LRP6 in dendritic cells enhances antitumor immunity. Oncoimmunology. 2016;5(4):e1115941.CrossRefPubMedGoogle Scholar
  39. 39.
    Garg B, Giri B, Majumder K, Dudeja V, Banerjee S, Saluja A. Modulation of post-translational modifications in beta-catenin and LRP6 inhibits Wnt signaling pathway in pancreatic cancer. Cancer Lett. 2016;388:64–72.CrossRefPubMedGoogle Scholar
  40. 40.
    Wang Z, Li B, Zhou L, Yu S, Su Z, Song J, et al. Prodigiosin inhibits Wnt/beta-catenin signaling and exerts anticancer activity in breast cancer cells. Proc Natl Acad Sci USA. 2016;113(46):13150–5.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Zheng R, Deng Q, Liu Y, Zhao P. Curcumin inhibits gastric carcinoma cell growth and induces apoptosis by suppressing the Wnt/beta-catenin signaling pathway. Med Sci Monit. 2017;23:163–71.CrossRefPubMedPubMedCentralGoogle Scholar
  42. 42.
    Chao J, Schmaier A, Chen LM, Yang Z, Chao L. Kallistatin, a novel human tissue kallikrein inhibitor: levels in body fluids, blood cells, and tissues in health and disease. J Lab Clin Med. 1996;127(6):612–20.CrossRefPubMedGoogle Scholar

Copyright information

© The International Gastric Cancer Association and The Japanese Gastric Cancer Association 2017

Authors and Affiliations

  • Caiqi Ma
    • 1
    • 2
  • Chuanghua Luo
    • 1
    • 2
  • Haofan Yin
    • 2
  • Yang Zhang
    • 2
  • Wenjun Xiong
    • 5
  • Ting Zhang
    • 7
  • Tianxiao Gao
    • 9
  • Xi Wang
    • 2
  • Di Che
    • 1
  • Zhenzhen Fang
    • 2
  • Lei Li
    • 8
  • Jinye Xie
    • 2
  • Mao Huang
    • 2
  • Liuqing Zhu
    • 2
  • Ping Jiang
    • 2
  • Weiwei Qi
    • 2
  • Ti Zhou
    • 2
  • Zhonghan Yang
    • 2
  • Wei Wang
    • 2
  • Jianxing Ma
    • 6
  • Guoquan Gao
    • 1
    • 2
    • 3
    • 10
  • Xia Yang
    • 1
    • 2
    • 4
    • 10
  1. 1.Program of Molecular Medicine, Affiliated Guangzhou Women and Children’s HospitalZhongshan School of Medicine, Sun Yat-Sen UniversityGuangzhouChina
  2. 2.Department of BiochemistryZhongshan School of Medicine, Sun Yat-sen UniversityGuangzhouChina
  3. 3.China Key Laboratory of Tropical Disease ControlSun Yat-sen University, Ministry of EducationGuangzhouChina
  4. 4.Guangdong Engineering & Technology Research Center for Gene Manipulation and Biomacromolecular ProductsSun Yat-sen UniversityGuangzhouChina
  5. 5.Department of Gastrointestinal SurgeryTraditional Chinese Medicine Hospital of Guangdong ProvinceGuangzhouChina
  6. 6.Department of PhysiologyUniversity of Oklahoma, Health Sciences CenterOklahoma CityUSA
  7. 7.Department of Clinical LaboratoryGuangzhou First People’s HospitalGuangzhouChina
  8. 8.Reproductive Medicine Centerthe Third Hospital Affiliated to Guangzhou Medical UniversityGuangzhouChina
  9. 9.Department of Hematologic OncologySun Yat-sen University Cancer CenterGuangzhouChina
  10. 10.Department of BiochemistryZhongshan Medical School, Sun Yat-sen UniversityGuangzhouChina

Personalised recommendations