Construction of Ionic Porous Organic Polymers (iPOPs) via Pyrylium Mediated Transformation

Abstract

Two new ionic porous organic polymers (iPOPs) with different counter anions were successfully fabricated via well-known pyrylium mediated transformation into pyridinium. 13C solid-state NMR, XPS, and FTIR were analyzed and confirmed the formation of pyridinium in the network. Containing charged and aromatic networks, both iPOPs exhibit a high affinity towards toxic hexavalent chromium Cr(VI) ions. What is more, it has been demonstrated that both CO2 adsorption and Cr(VI) removal properties can be tuned by simply varying counter anions.

This is a preview of subscription content, log in to check access.

References

  1. 1

    Li, H.; Li, J. H.; Thomas, A.; Liao, Y. Ultra-high surface area nitrogen-doped carbon aerogels derived from a Schiff-base porous organic polymer aerogel for CO2 storage and supercapacitors. Adv. Funct. Mater.2019, 29, 1904785.

    Article  Google Scholar 

  2. 2

    Shen, R.; Zhu, W.; Yan, X. G.; Li, T.; Liu, Y.; Li, Y. X.; Dai, S. Y.; Gu, Z. G. A porphyrin porous organic polymer with bicatalytic sites for highly efficient one-pot tandem catalysis. Chem. Commun.2019, 55, 822–825.

    CAS  Article  Google Scholar 

  3. 3

    Krishnan, S.; Suneesh, C. V. Fluorene-triazine conjugated porous organic polymer framework for superamplified sensing of nitroaromatic explosives. J. Photoch. Photobio. A2019, 371, 414–422.

    CAS  Article  Google Scholar 

  4. 4

    Weeraratne, K. S.; Alzharani, A. A.; El-Kaderi, H. M. Redox-active porous organic polymers as novel electrode materials for green rechargeable sodium-ion batteries. ACS Appl. Mater. Interfaces2019, 11, 23520–23526.

    CAS  Article  Google Scholar 

  5. 5

    Zhang, W. J.; Aguila, B.; Ma, S. Q. Potential applications of functional porous organic polymer materials. J. Mater. Chem. A2017, 5, 8795–8824.

    CAS  Article  Google Scholar 

  6. 6

    Gu, C.; Huang, N.; Chen, Y. C.; Qin, L. Q.; Xu, H.; Zhang, S. T.; Li, F. H.; Ma, Y. G.; Jiang, D. L. π-Conjugated microporous polymer films: designed synthesis, conducting properties, and photoenergy conversions. Angew. Chem. Int. Ed.2015, 54, 13594–13598.

    CAS  Article  Google Scholar 

  7. 7

    Li, Z. P.; Li, H.; Xia, H.; Mu, Y. Triarylboron-linked conjugated microporous polymers: sensing and removal of fluoride ions. Chem. Eur. J.2015, 21, 17355–17362.

    CAS  Article  Google Scholar 

  8. 8

    Buyukcakir, O.; Je, S. H.; Talapaneni, S. N.; Kim, D.; Coskun, A. Charged covalent triazine frameworks for CO2 capture and conversion. ACS Appl. Mater. Interfaces2017, 9, 7209–7216.

    CAS  Article  Google Scholar 

  9. 9

    Chen, G.; Huang, X.; Zhang, Y.; Sun, M.; Shen, J.; Huang, R.; Tong, M.; Long, Z.; Wang, X. Constructing POSS and viologen-linked porous cationic frameworks induced by the Zincke reaction for efficient CO2 capture and conversion. Chem. Commun.2018, 54, 12174–12177.

    CAS  Article  Google Scholar 

  10. 10

    Gang, X.; Bin, W. B.; Xin, Y. L.; Yi, R. B.; Ke, H. Y.; Fu, D.; Ileana, D.; Valerian, D.; Guang, S. Y. Hypervalent silicon-based, anionic porous organic polymers with solid microsphere or hollow nanotube morphologies and exceptional capacity for selective adsorption of cationic dyes. J. Mater. Chem. A2019, 3, 393–404.

    Google Scholar 

  11. 11

    Das, G.; Skorjanc, T.; Sharma, S. K.; Gandara, F.; Lusi, M.; Shankar Rao, D. S.; Vimala, S.; Krishna Prasad, S.; Raya, J.; Han, D. S.; Jagannathan, R.; Olsen, J. C.; Trabolsi, A. Violgenn-aasdd conjugated covalent organic networks via Zincke reaction. J. Am. Chem. Soc.2017, 139, 9558–9565.

    CAS  Article  Google Scholar 

  12. 12

    Shen, X. C.; Ma, S.; Xia, H.; Shi, Z.; Mua, Y.; Liu, X. M. Cattonic porous organic polymers as an excellent platform for highly efficient removal of pollutants from water. J. Mater. Chem. A2018, 6, 20653–20658.

    CAS  Article  Google Scholar 

  13. 13

    Liu, T. T.; Liang, J.; Huang, Y. B.; Cao, R. A bifunctional cationic porous organic polymer based on a Salen-(Al) metalloligand for the cycloaddition of carbon dioxide to produce cyclic carbonates. Chem. Commun.2016, 52, 13288–13291.

    CAS  Article  Google Scholar 

  14. 14

    Dong, D.; Zhang, H.; Zhou, B.; Sun, Y. F.; Zhang, H. L.; Cao, M.; Li, J. B.; Zhou, H.; Qian, H.; Lin, Z. Y.; Chen, H. G. Porous covalent organic frameworks for high transference number polymer-based electrolytes. Chem. Commun.2019, 55, 1458–1461.

    CAS  Article  Google Scholar 

  15. 15

    Huang, N.; Wang, P.; Addicoat, M. A.; Heine, T.; Jiang, D. Ionic covalent organic frameworks: design of a charged interface aligned on 1D channel walls and its unusual electrostatic functions. Angew. Chem. Int. Ed.2017, 56, 4982–4986.

    CAS  Article  Google Scholar 

  16. 16

    Zhao, Y. S.; Li, S. Q.; Zheng, X. S.; Tang, J. B.; She, Z. J.; Gao, G.; You, J. S. Rh/Cu-catalyzed cascade[4+2] vinylic C-H o-annulation and ring contraction of a-aryle enones with alkynes in air. Anqewi. Chem. Int. Ed.2017, 56, 4286–4289.

    CAS  Article  Google Scholar 

  17. 17

    Garciá-Acosta, B.; Comes, M.; Bricks, J. L.; Kudinova, M. A.; Kurdyukov, V. V.; Tolmachev, A. I. Sensory hybrid host materials for the selective chromo-fluorogenic detection of biogenic amines. Chem. Commun.2006, 21, 2239–2241.

    Article  Google Scholar 

  18. 18

    Martinez-Hayaa, R.; Bareckaa, M. H.; Miroa, P.; Marina, M. L.; Miranda, M. A. Photocatalytic treatment of cork wastewater pollutants. Degradation of gallic acid and trichloroanisole using triphenyl(thia)pyrylium salts. Appl. Catal. B2015, 179, 433–438.

    Article  Google Scholar 

  19. 19

    Katritzky, A. R.; Marson, C. M. Pyrylium mediated transformations of primary amino groups into other functional groups. Angew. Chem. Int. Ed.1984, 23, 420–429.

    Article  Google Scholar 

  20. 20

    Katritzky, L. R.; Manzo, R. H.; Lloyd, J. M.; Patel, R. C. Mechanism of the pyrylium/pyridinium ring interconversion. Mild preparative conditions for conversion of amines into pyridinium ions. Angew. Chem. Int. Ed.1980, 92, 315–316.

    CAS  Article  Google Scholar 

  21. 21

    Wang, H.; Qian, X. M.; Wang, K.; Su, M.; Haoyang, W. W.; Jiang, X.; Brzozowski, R.; Wang, M.; Gao, X.; Li, Y. M.; Xu, B. Q.; Eswara, P.; Hao, X. Q.; Gong, W. T.; Hou, J. L.; Cai, J. F.; Li, X. P. Supramolecular Kandinsky circles with high antibacterial activity. Nat. Commun. 2018, 9, 1815–1824.

    Article  Google Scholar 

  22. 22

    Qian, X. M.; Gong, W. T.; Wang, F. R.; Lin, Y.; Ning, G. L. A pyrylium-based colorimetric and fluorimetric chemosensor for the selective detection of lysine in aqueous environment and real sample. Tetrahedron Lett.2015, 56, 2764–2767.

    CAS  Article  Google Scholar 

  23. 23

    Gong, W. T.; Zhang, Q. L.; Wang, F. R.; Gao, B.; Lin, Y.; Ning, G. L. Selective sensing of H2PO4 (Pi) driven by the assembly of anthryl pyridinium ligands. Org. Biomol. Chem.2012, 10, 7578–7583.

    CAS  Article  Google Scholar 

  24. 24

    Qian, X. M.; Gong, W. T.; Li, X. P. Fluorescent cross-linked supramolecular polymer constructed by orthogonal self-assembly of metal-ligand coordination and host-guest interaction. Chem. Eur J.2016, 22, 6881–6890.

    CAS  Article  Google Scholar 

  25. 25

    Qian, X. M.; Gong, W. T.; Dhinakaran, M. K. Two bent-shaped π-organogelators: synthesis, fluorescence, self-assembly and detection of volatile acid vapours in gel films and in gel-gel states. Soft Matter2015, 11, 9179–9187.

    CAS  Article  Google Scholar 

  26. 26

    Gong, W. T.; Qian, X. M.; Wang, F. R. Synthesis and photophysical properties of new highly conjugated bispyrylium compounds. Heteroatom Chem.2013, 24, 66–71.

    CAS  Article  Google Scholar 

  27. 27

    Harris, F. W.; Chuang, K. C.; Huang, S. X.; Janimak, J. J.; Cheng, S. Z. D. Aromatic poly(pyridinium salt)s: synthesis and structure of organo-soluble, rigid-rod poly(pyridinium tetrafluoroborate)s. Polymer1994, 35, 4940–4948.

    CAS  Article  Google Scholar 

  28. 28

    Bhowmik, P. K.; Burchett, R. A.; Han, H.; Cebe, J. J. Synthesis and characterization of poly(pyridinium salt)s with organic counterion exhibiting both lyotropic liquid-crystalline and light-emitting properties. Macromolecules2001, 34, 7579–7581.

    CAS  Article  Google Scholar 

  29. 29

    Gomes, R.; Bhanja, P.; Bhaumik, A. A triazine-based covalent organic polymer for efficient CO2 adsorption. Chem. Commun. 2015, 51, 10050–10053.

    CAS  Article  Google Scholar 

  30. 30

    Che, S. Y.; Yang, Z. Z.; Popovs, I.; Luo, H. M.; Luo, Y. L.; Guo, W.; Chen, H.; Wang, T.; Jie, K. C.; Wang, C. M.; Dai, S. A succinct strategy for construction of nanoporous ionic organic networks from a pyrylium intermediate. Chem. Commun.0019, 55, 13450–13453.

    Article  Google Scholar 

  31. 31

    Pietrzak, R. XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel2009, 88, 1871–1877.

    CAS  Article  Google Scholar 

  32. 32

    Wang, Y.; Tao, J.; Xiong, S. H.; Lu, P.; Tang, J. T.; He, J. Q.; Javaid, M. U.; Pan, C. Y.; Yu, G. P. Ferrocene-based porous organic polymers for high-affinity iodine capture. Chem. Eng. J.2020, 380, 122420–122425.

    CAS  Article  Google Scholar 

  33. 33

    Li, X. M.; Zhou, M. J.; Jia, J. X.; Jia, Q. A water-insoluble viologen-based β-cyclodextrin polymer for selective adsorption toward anionic dyes. React. Funct. Polym.2018, 126, 20–26.

    CAS  Article  Google Scholar 

  34. 34

    Su, Y. Q.; Wang, Y. X.; Li, X. J.; Li, X. X.; Wang, R. H. Imidazolium-based porous organic polymers: anion exchange driven capture and luminescent probe of Cr2O72−. ACS Appl. Mater. Interfaces2016, 8, 18904–18911.

    CAS  Article  Google Scholar 

  35. 35

    Wen, T.; Fan, Q. H.; Tan, X. L.; Chen, Y. T.; Chen, C. L.; Xu, A. W.; Wang, X. K. A core-shell structure of polyaniline coated protonic titanate nanobelt composites for both Cr(VI) and humic acid removal. Polym. Chem.2016, 7, 785–794.

    CAS  Article  Google Scholar 

  36. 36

    Zhang, C. H.; Liu, Y. C.; Sun, L. B.; Shi, H. Z.; Shi, C.; Liang, Z. Q.; Li, J. Y. A zwitterionic ligand-based cationic metal-organic famework for rapidly selective dye capture and highly efficient Cr2O72− removal. Chem. Eur J.2018, 24, 2718–2724.

    CAS  Article  Google Scholar 

  37. 37

    Guo, D. M.; Ana, Q. D.; Xiao, Z. Y.; Zhai, S. R. Efficient removal of Pb(II), Cr(VI) and organic dyes by polydopamine modified chitosan aerogels. Carbohyd Polym.2018, 202, 306–314.

    CAS  Article  Google Scholar 

  38. 38

    Liang, X. T.; Fan, X. Y.; Li, R. M.; Li, S. R.; Shen, S. K.; Hu, D. D. Efficient removal of Cr(VI) from water by quaternized chitin/branched polyethylenimine biosorbent with hierarchical pore structure. Bioresource Technol.2018, 250, 178–184.

    CAS  Article  Google Scholar 

  39. 39

    Song, L.; Liu, F. Q.; Zhua, C. Q.; Li, A. M. Facile one-step fabrication of carboxymethyl cellulose based hydrogel for highly efficient removal of Cr(VI) under mild acidic condition. Chem. Eng. J.2019, 369, 641–651.

    CAS  Article  Google Scholar 

  40. 40

    Zhang, L.; Niu, W.; Sun, J.; Zhou, Q. Efficient removal of Cr(VI) from water by the uniform fiber ball loaded with polypyrrole: static adsorption, dynamic adsorption and mechanism studies. Chemosphere2020, 248, 126102–126112.

    CAS  Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (No. 21206016 for W.T. Gong, No. U1808210 for G.L. Ning), the Fundamental Research Funds for the Central Universities (No. DUT-17LK07), and the Natural Science Foundation of Liaoning province (No. 2019-MS-046).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Wei-Tao Gong or Gui-Ling Ning.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, S., Gong, W., Qu, W. et al. Construction of Ionic Porous Organic Polymers (iPOPs) via Pyrylium Mediated Transformation. Chin J Polym Sci (2020). https://doi.org/10.1007/s10118-020-2436-4

Download citation

Keywords

  • Ionic porous organic polymers
  • Pyrylium
  • CO2 adsorption
  • Hexavalent chromium removal
  • Different counter anions